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Abstract—This paper presents a new approach to solving the
fuzzy stochastic multi attributes group decision-making
(MAGDM) problem where the attributes values take 2-tuple
linguistic form. First, a 2-tuple hybrid ordered weighted
geometric (THOWG) operator is developed and all the individual
preference values are aggregated into the comprehensive
preference values. Then, by applying generating cloud method, a
comprehensive preference value is converted into a normal cloud.
Consequently, the cloud prospect decision matrix is constructed
by defining a cloud distance, cloud possibility degree and cloud
prospect value function. Furthermore, we establish a
programming model which satisfies maximum integrated cloud
prospect value, attain the attributes weights, and consequently
list the order of alternatives. Finally, an example is illustrated to
verify the developed approach.

Keywords—Prospect theory; multi-attributes group decision-
making; Cloud model; 2-tuple linguistic

I. INTRODUCTION
Multiple attributes group decision-making (MAGDM) is an

important research topic, which determines the ranking order
of the alternatives to help decision makers to make their
decisions. In reality, the decision-making information is usually
uncertain or fuzzy due to the complexity of object factors and
the recognizing limitations of decision makers. Moreover, in
many situations, the attributes values of decision-making
information take the form of 2-tuples linguistic variables
because of time pressure, lack of knowledge, and people’s
limited expertise related with problem domain. Herrera and
Martinez proposed a 2-tuple linguistic model to represent the
assessment information which can effectively avoid
information loss[1-2]. Recently, many researchers paid much
attention to 2-tuple linguistic MAGDM problems[3-8].

The 2-tuple linguistic model can describe the decision-
making information, whereas it does not seem perfect and
accurate to deal with information in terms of fuzziness and
randomness. In this respect, the Cloud model can well
overcome this weakness and make decision processes more
realistic as it characterizes information by using fuzzy set
theory and probability statistics at the same time. The Cloud
model proposed by Professor Deyi Li, which is based on the
traditional fuzzy set theory and probability statistics, not only
well characterizes the concept of uncertainty in the natural
language, but also reflects the intrinsic connection between

randomness and fuzziness[9]. Owing to the advantage of
tackling with vague and random information, many methods on
Cloud model have been put forward and used to solve
MAGDM problems[10-13]. Hence, it is necessary to
incorporate Cloud model into the 2-tuple linguistic to describe
the decision-making information.

However, these researches mentioned above generally
assumed that decision makers were totally rational and fell into
the expected utility theory framework. Nevertheless, the
expected utility theory has some unexplained phenomena such
as Allias paradox and Ellsberg paradox. Noting the limitations
of the expected utility theory, Kahneman and Tversky
proposed Prospect theory[14]. The decision-making method
based on Prospect theory has recently become a research
hotspot because it is more in line with people’s actual decision-
making behavior[15-17]. To the best of authors’ knowledge,
however, the study of 2-tuple linguistic fuzzy stochastic
MAGDM problems based on Cloud model and Prospect theory
at present has not been reported in the existing literature.

The paper aims to develop a new method for studying 2-
tuple linguistic fuzzy stochastic MAGDM problems via Cloud
model and Prospect theory. A MAGDM method largely
consists of four phases: (1) Construct decision problem and
describe information; (2) aggregate the input arguments; (3)
determine its weights; and (4) multiply these arguments and its
weights, and then aggregate all the weighted arguments.

As for the second phase, there are many methods for
aggregating the information[1,3,5-7,18-20]. In these
aggregating operators, 2-tuple weighted geometric (TWG)
operator and 2-tuple ordered weighted geometric (TOWG)
operator are the most popular due to their easy calculation,
good reliability and high resolution. However, TWG operator
just considers individual importance, and it neglects the
importance of ordered position. On the other hand, TOWG
operator only takes into account the importance of relative
position while it ignores the individual importance. Hence, we
propose a 2-tuple hybrid ordered weighted geometric
(THOWG) operator to consider not only the individual
importance but also the importance of relative position. In
addition, some properties of the THOWG operator are
analyzed. In particular, the THOWG operator can respectively
degenerate to TWG operator and TOWG operator under the
given conditions.
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Furthermore, by using THOWG operator, we derive
comprehensive preference values and consequently, a
comprehensive preference value can be converted into a
normal cloud by applying generating cloud method. Based on
Prospect theory and Cloud model, we define a cloud distance,
cloud possibility degree and cloud prospect value function.
According to these definitions, we construct the cloud prospect
decision-making matrix which selects all other alternatives as
the reference point. Considering the risk attitudes of decision
makers, a programming optimization model is constructed to
calculate the attributes weights by applying the method of
maximizing the integrated cloud prospect value. Finally, based
on the cloud prospect decision-making matrix and attributes
weighting model, the integrated cloud prospect value is
obtained, which provides a scale for ordering alternatives. In
addition, an example is provided to show the validity of the
approach.

The rest of this paper is organized as follows. Section 2
introduces the fundamental conceptions of 2-tuple linguistic,
Prospect theory and Cloud model. Section 3 develops a new
aggregation (THOWG) operator and provides a method by
which a 2-tuple linguistic is converted into a corresponding
normal cloud. We further define the cloud distance, cloud
possibility degree and cloud prospect value function. Section 4
proposes a 2-tuple linguistic fuzzy stochastic MAGDM
approach based on Prospect theory and Cloud model. Section 5
presents an example to verify our method and Section 6 draws
conclusions.

II. PRELIMINARIES

This section introduces the fundamental conceptions of 2-
tuple linguistic, Cloud model and Prospect theory.

A. 2-tuple linguistic
First, Herrera and Martinez developed a 2-tuple fuzzy

linguistic representation model based on the concept of
symbolic translation[1-2]. It is used for representing the
linguistic assessment information by means of a 2-tuple ( , )i is a ,
where is is a linguistic label from predefined linguistic term set
S and ia is the value of symbolic translation, and [ 0.5,0.5)ia   .

Definition 1 Let  0 1 2, , , , tS s s s s  be a finite and totally
ordered discrete linguistic term set with odd cardinality,
where is represents a possible value for a linguistic
variable.  0, t  is a number value representing the
aggregation result of linguistic symbol. Then the function 
used to obtain the 2-tuple linguistic information equivalent to b
is defined as:

   : [0, ] [ 0.5,0.5), ,iQ S s         , (1)

where    , , [ 0.5,0.5),i = round i round        is the
usual round operation, is has the closest index label
to  and is the value of the symbolic translation.

Definition 2 Let  0 1 2, , , , tS s s s s  be a linguistic term set
and  ,is  a linguistic 2-tuple. There is always a

function 1 such that from a 2-tuple it returns its equivalent
numerical value  0, t R   , which is

 1 1: [ 0.5,0.5) [0, ], ,iS t s i           . (2)

From Definitions 1 and 2, we can conclude that the
conversion of a linguistic term into a linguistic 2-tuple consists
of adding a value 0 as symbolic translation:

   ,0i is s  . (3)

Definition 3 Let  ,k ks  and  ,l ls  be two 2-tuples, they
should have the following properties:

(1) If k l then  ,k ks  is smaller than  ,l ls  , denoted
by    , ,k k l ls s  ;

(2) If k l then (a) if k l  , then  ,k ks 
=  , ,l ls  representing the same information; (b) if k l  ,
then    , ,k k l ls s  ; (c) if k l  , then    , ,k k l ls s  .

B. Cloud model
The cloud theory is a model that contains the transferring

procedure of uncertainty between quality concept and quantity
data representation by using natural language, which was
proposed by Professor Deyi Li based on the traditional fuzzy
set theory and probability statistics[9].

Definition 4 Suppose U is a quantitative domain expressed by
precise values, and C is a qualitative concept on the domain. If
the quantitative value x U , and x is a random realization of
C, whose membership    0,1x  is a random number with
stable tendency:

 : [0,1], , .U x U x x    

Then, the distribution of x in the domain is called as cloud,
and each x is called as droplet.

Cloud is made up of many cloud droplets, and a single
cloud droplet is a specific realization of the qualitative value
in number. The three number features of cloud are expectation
Ex , entropy En and hyper entropy He . Here, Ex
determines the center of the cloud, En determines the range
of the cloud and He determines the dispersive degree of
cloud droplets.

The 3En rules of cloud refer to that the total contribution
of all elements on the domain U to the qualitative concept C is
1.That is, 99.7% of the cloud droplets will fall into the range
( 3 , 3Ex En Ex En  ). Normal cloud is the most common to
express the linguistic values. Figure 1 shows the cloud (50,
3.93, 0.1).
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Figure 1.cloud (50, 3.93, 0.1)

C. Prospect theory
Prospect theory was initially proposed by Kahneman and

Tversky[14]. The theory considers that the decision results are
associated with the subjective standard of decision maker under
uncertain conditions, and different decision makers may have
different options on the same issue. Prospect theory is
codetermined by the value function and the probability weight
function.

1

( ) ( )
n

i i
i

V p v x


  (4)

where V is the prospect value, and ( )ip is the probability
weight function which is the monotone increasing function of
the probability assessment, and ( )iv x is the value function
coming from the subjective feeling of decision maker. ( )iv x is
proposed by Tversky and Kahneman[21]:

( ) , ( 0),
( )

( ) , ( 0),
x x

v x
x x





     
    

(5)

where x is used to measure the value deviation from a certain
reference point, which is the gains or the losses of the surface
value.  and  are parameters related to gains and losses,
respectively. The parameter  represents a characteristic of
being steeper for losses than for gains and 1  shows the loss
aversion.

The probability weight function proposed by Tversky and
Kahneman is shown as follows[21]:

1/( )
( (1 ) )

pp
p p



   
 

, 1/( )
( (1 ) )

pp
p p



    
 

, (6)

where ( )p  and ( )p  are respectively the nonlinear weight
function of the gains and the losses, and  is the risk gain
attitude coefficient, and is the risk loss attitude coefficient.

III. THE CLOUD MODEL ALGORITHM AND CLOUD PROSPECT
VALUE FUNCTION

This section provides a new 2-tuple linguistic aggregation
operator, and presents a method that a 2-tuple linguistic is
converted into a corresponding normal cloud. In addition, this
section defines a cloud distance, cloud possibility degree and
cloud prospect value function.

A. Aggregation operators with 2-tuple linguistic information
and generating cloud method
1) Aggregation operators with 2-tuple linguistic

information.
Definition 5[18] Jiang & Fan let     1 1 2 2, , ,s a s a

 , , ,n ns a be a set of 2-tuple, and the weighting vector of 2-

tuple  ,j js a is  1 2, , , T
n     such that 0j  ,

1

1
n

j
j




 . The 2-tuple weighted geometric (TWG) operator is

    1

1

, , , , [ 0.5,0.5).j
n

j j
j

s s s S


  



 
       

 
  

(7)

Definition 6[18] Jiang & Fan let     1 1 2 2, , ,s a s a

 , , ,n ns a be a set of 2-tuples, a 2-tuple ordered weighted
geometric operator of n dimension is a mapping TOWG
: nR R that has an associated vector  1 2, , , T

n    

such that 0jw  and
1

1
n

j
j




 , moreover,

       1

1

, , , , [ 0.5,0.5),
jn

j j
j

s s s S


   



 
       

 


(8)

where       1 , 2 , , n   is a permutation of  1,2, ,n

such that     1 1,j js        ,j js  for all 1,2, , nj   .

From definition 5 and 6, we find that TWG operator only
considers individual importance, whereas it neglects the
importance of ordered position. On the other hand, TOWG
operator just focuses on the importance of relative position
while it ignores the individual importance.

Therefore, this paper presents a new 2-tuple aggregation
operator to overcome these limitations.

Definition 7 Let       1 1 2 2, , , , , ,n ns a s a s a be a set of 2-tuples,
the 2-tuple hybrid ordered weighted geometric (THOWG)
operator of n dimension is a mapping THOWG: nR R that

164

Advances in Intelligent Systems Research (AISR), volume 142



has an associated vector  1 2, , , T
n     such that 0j 

and
1

1
n

j
j




 . Furthermore,

   1
( ) ( )

1

ˆˆ( , ) , , , [ 0.5.0.5),
j

n

j j
j

s s s S


   



 
       

 
 

(9)

where       1 , 2 , , n   is a permutation of  1,2, ,n ,

such that          1 1, ,j j j js s         

  1 , /j j js nw  for all 2, ,j n  , here w 

 1 2, , , T
nw w w is the weighting vector of 2-tuple

 ,j js a and
1

0, 1
n

j j
j

w w


  .

Proposition 1. If  1/ ,1/ , ,1/ Tw n n n  , THOWG operator
degenerates into TOWG operator.

Proof. If  1/ ,1/ , ,1/ Tw n n n  , then   1 , /j j js nw 

 ,j js  .

Thus,

      
      

1 1 2 2

1 1 2 2

, , , , , ,

, , , , , , .
n n

n n

THOWG s s s

TOWG s s s

  

  





Proposition 2. If  1/ ,1/ , ,1/ Tw n n n  and  1 1,j js   

 ,j js  , then THOWG operator degenerates into TWG
operator.

Proof. According to Proposition 1, we know that THOWG
operator degenerates into TOWG operator as

 1/ ,1/ , ,1/ Tw n n n  . In addition, as    1 1, ,j j j js s    ,

the corresponding weight of  ,j js  is j . Therefore,

as  1/ ,1/ , ,1/ Tw n n n  and    1 1, ,j j j js s    , we have

      
      

1 1 2 2

1 1 2 2

, , , , , ,

, , , , , , .
n n

n n

THOWG s s s

TOWG s s s

  

  





Proposition 3. If  ( , ) ,j js s  for all 1,2, , ,j n  then

      1 1 2 2, , , , , ,n nTHOWG s s s     ,s  .

Proof. It is easy to find the conclusion according to Eq. (9).

Proposition 4. Let      1 1 2 2, , , , , ,n ns s s   and

     1 1 2 2, , , , , ,n ns s s        be two sets of 2-tuples, if

   , ,j j j js s   for all 1,2, ,j n  and the weight
conditions are fixed, then

      
      
1 1 2 2

1 1 2 2

, , , , , ,

, , , , , ,
n n

n n

THOWG s s s

THOWG s s s

  

       




.

Proof. According to Eq. (9), we have

         1
1 1 2 2

1

, , , , , , , ,j
n

n n j j
j

THOWG s s s s


   



 
   

 
 

         1
1 1 2 2

1

, , , , , , , .
jn

n n j j
j

THOWG s s s s


   



           
 
 

If    , ,j j j js s   , then

   1 1, / , / .j j j j j js nw s nw      

So,

         1 1, , / , / , .j j j j j j j j j js s nw s nw s                

Therefore,

   1 1, , ,j j j js s        

and then,

  1

1

,
j

n

j j
j

s






 
  
 
    1

1

, .
jn

j j
j

s






     
 
 

Consequently, we derive

      
      
1 1 2 2

1 1 2 2

, , , , , ,

, , , , , , .
n n

n n

THOWG s s s

THOWG s s s

  

       




.

2) Generating cloud method.
Assume that decision makers’ linguistic evaluation scale

is n and min max[ , ]U X X is effective universe given by
experts, the intermediate normal cloud can be expressed
by 0 0 0 0( , , )C Ex En He , then the respective representation of
adjacent normal cloud are 1 1 1 1( , , ),C Ex En He   

1 1 1 1( , , ),C Ex En He   
,

1 1 1 1
2 2 2 2

( , , )n n n nC Ex En He   
   

,

1 1 1 1
2 2 2 2

( , , )n n n nC Ex En He   
   

.

Based on golden section technique[23], we present a
method that a 2-tuple linguistic can be converted into a
corresponding normal cloud. For example, to generate five

normal clouds, writing  1 , / ,j js j   1 ,
1








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 max min0.382
6

X X
En


  , then the three number features of

normal cloud can be described as follows:

min max
0 2

X X
Ex 


  , 2 minEx X    , 2 maxEx X    ,

min max min max
1 0.382

2 2
X X X X

Ex  

 
     ,

min max
1 0 0.382

(n 3) / 2
X X

Ex Ex 


   


,  0 0.618 1En En    ,

   1 1 max min0.382 1 / 6En En X X      ,

 2 2 1 / 0.618En En En      .

Suppose 0He is known, then 1 1 0 / 0.618He He He   ,

2 2 1 / 0.618He He He    .

If 0,j  then 2-tuple linguistic degenerates into natural
language. In this case, the natural language is converted into a
normal cloud via the generating cloud method.

B. The cloud distance and cloud possibility degree
For the sake of comprehensively considering three number

features of normal cloud model, the cloud distance and cloud
possibility degree are defined based on “3En rules” of cloud
model.

Definition 8[22] Wang&Zhang Given 1 2,Y Y over a set F of
one-dimensional normal cloud, a function :d F F R  with
the following properties:

（1） 1 2 2 1( , ) 0, ( , ) 0d Y Y d Y Y  ,

（2） 1 2 2 1( , ) ( , )d Y Y d Y Y ,

（ 3 ） If for any 3 1 3 1 2 2 3, ( , ) ( , ) ( , )Y F d Y Y d Y Y d Y Y   ,
then 1 2( , )d Y Y is called the distance of normal cloud.

Let 1 1 1 1( , , )C Ex En He and 2 2 2 2( , , )C Ex En He be one-
dimensional normal cloud in universe U, according to
“ 3En rules” of normal cloud model, we have the following
definition.

Definition 9.The distance 1 2( , )d C C of normal cloud between

1C and 2C is defined as:

1 2 1 2
1 2

( , ) ( , )
( , )

2
d C C d C C

d C C


 , (10)

where

2 2 2 2
1 1 2 2

1 2 1 2
1 2

3 3
( , ) (1 ) (1 )

En He En He
d C C Ex Ex

Ex Ex
 

   

2 2 2 2
1 1 2 2

1 2 1 2
1 2

3 3
( , ) (1 ) (1 )

En He En He
d C C Ex Ex

Ex Ex
 

   

Proposition 5. The distance of normal cloud (i.e.,
Eq.(10))satisfies the following properties:

（1） 1 2 2 1( , ) 0, ( , ) 0d C C d C C  ,

（2） 1 2 2 1( , ) ( , )d C C d C C ,

（3）For any 3 1 3 1 2 2 3, ( , ) ( , ) ( , )C F d C C d C C d C C   .

Proof. (1) (2) It is easy to see that 1 2 1 2( , ) ( , )d C C d C C  

(3) According to definition 9, we have

2 22 2
3 31 1

1 3 1 3
1 3

33
( , ) (1 ) (1 )

En HeEn He
d C C Ex Ex

Ex Ex


   

2 2 2 2
1 1 2 2

1 2
1 2

2 22 2
3 32 2

2 3
2 3

3 3
(1 ) (1 )

33
(1 ) (1 )

En He En He
Ex Ex

Ex Ex

En HeEn He
Ex Ex

Ex Ex

 
   




  

2 2 2 2
1 1 2 2

1 2
1 2

2 22 2
3 32 2

2 3
2 3

3 3
(1 ) (1 )

33
(1 ) (1 )

En He En He
Ex Ex

Ex Ex

En HeEn He
Ex Ex

Ex Ex

 
    


  

1 2 2 3( , ) ( , )d C C d C C  .

Similarly，we can obtain

     1 3 1 2 2 3, , ,d C C d C C d C C  .

Therefore,

 1 3 1 3 1 3
1( , ) ( , ) , )
2

d C C d C C d C C 

        1 2 2 3 1 2 2 3
1 , , , ,
2
d C C d C C d C C d C C   

         1 2 2 3 1 2 2 3
1 1, , , ,
2 2
d C C d C C d C C d C C   

1 2 2 3( , ) ( , )d C C d C C 

Remark 1.If 1 1 2 2 0En He En He    , then normal cloud
will degenerate into real number, in this case,

1 2 1 2( , )d C C Ex Ex  .
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Suppose that 1 1 1 1C ( , , )Ex En He and 2 2 2 2C ( , , )Ex En He are
two one-dimensional normal clouds in universe U, positive
ideal cloud  * max ,min ,min , 1,2.i i ii ii

C Ex En He i 

Definition 10. The cloud possibility degree is defined as
*

1
1 2 * *

1 2

( , )
( ) 1

( , ) ( , )
d C Cp C C

d C C d C C
  


, (11)

where *
1( , )d C C and *

2( , )d C C are the distances between
positive ideal cloud C*and C1, C2, respectively.

Remark 2. ● we find that if 1 2( )p C C  0.5, then 1 2C C ,
otherwise 1 2C C .

● In addition, it is easy to conclude that:

(1) 1 20 ( ) 1p C C   ;

(2)   *
1 2 11 ,p C C C C      *

1 2 20p C C C C    ;

(3) 1 2 1 2( ) ( ) 1,p C C p C C    particularly,  1 1 1p C C  ;

(4) If 1 2 1 2( ) ( ) 0.5p C C p C C    , then 1C = 2C .

Proposition 6. Suppose that 1 1 1 1C ( , , )Ex En He and

2 2 2 2C ( , , )Ex En He are two one-dimensional normal clouds in
universe U, if 1 2Ex Ex , 1 2En En , 1 2He He , then 1 2C C .

Proof. If 1 2Ex Ex , 1 2En En , 1 2He He , then the positive
ideal cloud is *

1 1 1( , , )C Ex En He .

According to definitions 9, we have *
1( , ) 0d C C  .

Consequently, by applying Eq. (11), it can be concluded
that

*
1

1 2 * *
1 2

( , )
( ) 1 1

( , ) ( , )
d C Cp C C

d C C d C C
   


.

Thus, 1 2C C .

C. The cloud prospect value function
According to Eqs.(5), (10) and (11), we can define the

cloud prospect value function.

Definition 11. Suppose that ( , , )i i i iC Ex En He and

0 0 0 0( , , )C Ex En He are two one-dimensional normal clouds in
universe U, the prospect value function of cloud Ci is defined
as:

 
  

  
0

0

, ,

, ,

i 0 i
i

i 0 i

d C C C C
V C

d C C C C






   
 

, (12)

where cloud C0 is reference point.

Remark 3. Here 0iC C (or 0iC C ) can be determined via
cloud possibility degree (11).

IV. AN APPROACH OF 2-TUPLE LINGUISTIC FUZZY
STOCHASTIC MULTI-ATTRIBUTES GROUP DECISION-MAKING

This section presents an approach to dealing with the 2-
tuple linguistic fuzzy stochastic MAGDM problems where the
attributes weights are incompletely known.

A. Problem description
Let  1 , , , ,i mZ Z Z Z   be a discrete set of alternatives,

 1 , , , ,j nS S S S   a finite set of attributes, and

 1, , ,l tE E E E   is a finite set of decision makers.
Assume that the weight vector of attributes is

1( , , , )Tj nw w w w   such that
1

1, 0,
n

j j
j
w w



  and

1( , , , , )Tl t      is the weight vector of decision makers

with
1

1, 0.
t

l l
l
 



  Denoted by 1( , , , , )k s      the

possible status, and kp the probability of the status k ,

where
1

0 1, 1.
s

k k
k

p p


  

The decision makers  1,2, ,lE l t  provide their
preference values for each alternative on each criterion under
status  1,2, ,k k s   and consequently construct the

decision matrix  (l)
l ijk m n
R r


 , where (l)

ijkr takes the form of

linguistic variable.

In addition, 1( , , , )Tj nw w w w H   be the weight
vector of attributes, where H be the set of the incompletely
known attributes weights. In general, H can be expressed as
one of the combinations of the following form:
i ia w , i iw b , i i i iw     , i jw w , i jw w   ,

( )i j i i iw w    and i j k lw w w w   ( j k l  ).

B. The decision-making approach
In this section, we propose a new approach to solve the

fuzzy stochastic MAGDM problems with 2-tuple linguistic
assessments. An algorithm and process of the MAGDM
problems with 2-tuple linguistic assessments may be given as
follows.

Step 1.Derive 2-tuple linguistic decision matrix.

Transform linguistic decision matrix   ll ijk m n
R r


 into 2-

tuple linguistic decision matrix   ,0l
l ijk m n
R r


 by applying

Eq. (3).

Step 2.Aggregate decision matrices.
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Utilize the decision information given in matrix lR , and
THOWG operator which has associated weighting vector

1( , , , )Tl t     

           1, ,0 , ,0 , , ,0l t
ijk ijk ijk ijk ijk ijkx r THOWG r r r   

     
   

1

1

ˆˆ , ,

, [ 0.5.0.5), 1, 2, s.

lt
l l

ijk ijk
l

l l
ijk ijk

r

r S k










 
   

 

   




(13)

to aggregate all the decision matrices  1,2, ,lR l t  into a

collective decision matrix  ,ijk ijk m n
R r 


 , where     ˆˆ ,l l

ijk ijkr 

is jth element of     11
1,0 /ijkr t  ,    21

2,0 /ijkr t  , ,

   1 ,0 /t
ijk tr t  according to descending order, and

 1 2, , , T
t     the weighting vector of decision makers.

Step 3.Calculate cloud decision matrix.

According to generating cloud method, the collective
decision matrix R is converted into the corresponding normal
cloud decision matrix R .

Step 4.Compute the cloud prospect function value.

Based on Eq. (4), it can be calculated the prospect function
value ijv of the jth criterion under the ith alternative by
selecting all other alternatives as the reference point.
Therefore, we obtain the prospect function value of cloud
model shown as follows:

1 1,

( ) ( ) ( ),
s m

k
ij uji uji k

k u u i

V C C p 
  

  (14)

where,

( ( , )) ,
( )

( ( , )) ,

k k k k
uj ij ij ujk

uji k k k k
uj ij ij uj

d C C C C
C

d C C C C








  
 

;

1

1

,
( (1 ) )

( ) .
,

( (1 ) )

k kk
ij uj

k k
lji k

k kk
ij uj

k k

p
C C

p p
p

p
C C

p p



  



  






   
 
  

Step 5.Determine the attributes weights.

Considering that the principle of maximizing the integrated
cloud prospect value is consistent with the habit of decision
maker, in other words, decision maker always maximizes
his/her benefits (or minimizes his/her costs), we can construct
the following optimization model to determine the attributes
weights by applying the method of maximizing the integrated
cloud prospect value.

2

1

max

. . 1,

,

0, ( 1, 2, , ),

n

j
j

j

j

M V w

s t w

w H

w j n



 





 





(15)

where V is the integrated cloud prospect value,
1 2( , , , )Tnw w w w  an attributes weight vector, and H the set

of the attributes weights which are incompletely known.

It can be utilized mathematic software (e.g., Matlab or
Lingo) to solve the above optimization model and get the
desirable attributes weight vector 1 2( , ,..., )Tnw w w w .

Step 6.Derive the integrated cloud prospect value.

By applying Eqs. (14) and (15), we can derive the
integrated cloud prospect value shown as follows:

1

( 1, , ),
n

i ij j
j

V v w i m


   (16)

where iV is the integrated cloud prospect value.

Step 7.Rank the order of alternatives.

According to the integrated cloud prospect
value ( 1, , )iV i m  , one can rank the order of alternatives
with the fact that the larger the value of ( 1, , )iV i m  is, the
better the alternative is.

V. NUMERICAL EXAMPLE

The future development trend of electric power grid is
smart grid, which possesses such features as being clean,
secure, economic, and so on. It is necessary to carry out risk
management in the construction of smart grids in China due to
the more complicated operation environment. Let us suppose a
grid company needs to manage, there is a panel with four
possible alternatives to elect: 1 2 3 4, , , .Z Z Z Z The grid company
must include the following three attributes while making the
choice:(1) 1G expresses the police risk, (2) 2G stands for the
technology risk, (3) 3G denotes the market risk. According to
the market forecast, there are three natural statuses for the
attributes: good  1 , medium  2 and poor  3 , and the
corresponding probability of each status are 0.3, 0.5 and 0.2,
respectively. In addition, the experts’ evaluation can provide
information on the weight set which is shown as
follows:  1 2 30.2 0.5,0.1 0.4,0.4 0.7H w w w       .The
four possible alternatives are to be evaluated using the
linguistic term set S={s0=extremely poor, s1=poor, s2=fair,
s3=good, s4=extremely good} by the three decision makers
under the above three attributes and three natural statuses. The
assessments for alternatives arising from questionnaire
investigation to the experts are shown in Table I.
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TABLE I. LINGUISTIC DECISION MATRIX lR

Z1 Z2 Z3 Z4

E1

1 0.3 
G1 EG F F G
G2 G EG G EG
G3 EG G EG EG

2 0.5 
G1 F P P F
G2 F P F P
G3 G F EG G

3 0.2 
G1 EG F P G
G2 EP F F EP
G3 F F F EG

E2

1 0.3 
G1 G P G G
G2 G G F G
G3 EG EG G EG

2 0.5 
G1 F P F P
G2 P P F F
G3 G F G G

3 0.2 
G1 EG F P G
G2 P F G P
G3 F P F G

E3

1 0.3 
G1 EG F F G
G2 G EG G EG
G3 EG G EG EG

2 0.5 
G1 F P P F
G2 F P F P
G3 G F EG G

3 0.2 
G1 EG F G G
G2 EP F F EP
G3 F F F EG

(1) Derive 2-tuple linguistic decision matrix.
Transform the linguistic decision matrix
 (l)

4 3
, 1, 2,3; 1,2,3l ijkR r l k


   given in Table 1 into 2-tuple

linguistic decision matrix  (l)

4 3
, 0 , 1, 2,3; 1, 2,3l ijkR r l k


  

given in Table II.

(2) Aggregate decision matrices.

Based on THOWG operator, calculating the collective 2-
tuple linguistic decision matrix  

4 3
, , 1, 2,3ijk ijkR r k


 

given in Table III, where (0.3,0.3,0.4)T  is the associated
weighting vector with THOWG operator and

 0.3,0.4,0.3 T  is the weighting vector of decision makers.

(3)Calculate cloud decision matrix.

According to generating cloud method, the collective 2-
tuple linguistic decision matrix is converted into the
corresponding normal cloud decision matrix R given in Table
IV.

(4)Compute the cloud prospect function value.

By using Eq.(14), where 0.88   , 2.25  , 0.61 
and 0.69  , we get the cloud prospect matrix shown as
follows:

57.733 51.692 11.627
92.011 6.619 119.263
70.486 4.238 1.868
8.382 26.565 21.594

V

  
    
  
 
  

TABLE II. 2-TUPLE LINGUISTIC DECISION MATRIX lR

Z1 Z2 Z3 Z4

E1

1 0.3 
G1 (EG,0) (F,0) (F,0) (G,0)
G2 (G,0) (EG,0) (G,0) (EG,0)
G3 (EG,0) (G,0) (EG,0) (EG,0)

2 0.5 
G1 (F,0) (P,0) (P,0) (F,0)
G2 (F,0) (P,0) (F,0) (P,0)
G3 (G,0) (F,0) (EG,0) (G,0)

3 0.2 
G1 (EG,0) (F,0) (P,0) (G,0)
G2 (EP,0) (F,0) (F,0) (EP,0)
G3 (F,0) (F,0) (F,0) (EG,0)

E2

1 0.3 
G1 (G,0) (P,0) (G,0) (G,0)
G2 (G,0) (G,0) (F,0) (G,0)
G3 (EG,0) (EG,0) (G,0) (EG,0)

2 0.5 
G1 (F,0) (P,0) (F,0) (P,0)
G2 (P,0) (P,0) (F,0) (F,0)
G3 (G,0) (F,0) (G,0) (G,0)

3 0.2 
G1 (EG,0) (F,0) (P,0) (G,0)
G2 (P,0) (F,0) (G,0) (P,0)
G3 (F,0) (P,0) (F,0) (G,0)

E3

1 0.3 
G1 (EG,0) (F,0) (F,0) (G,0)
G2 (G,0) (EG,0) (G,0) (EG,0)
G3 (EG,0) (G,0) (EG,0) (EG,0)

2 0.5 
G1 (F,0) (P,0) (P,0) (F,0)
G2 (F,0) (P,0) (F,0) (P,0)
G3 (G,0) (F,0) (EG,0) (G,0)

3 0.2 
G1 (EG,0) (F,0) (G,0) (G,0)
G2 (EP,0) (F,0) (F,0) (EP,0)
G3 (F,0) (F,0) (F,0) (EG,0)

TABLE III. COLLECTIVE DECISION MATRIX R

Z1 Z2 Z3 Z4

E1

1 0.3 
G1 (EG,-0.47) (F,-0.5) (F,0.3) (G,-0.03)
G2 (G,-0.03) (EG,-0.47) (G,-0.47) (EG,-0.47)
G3 (EG,-0.04) (G,0.33) (EG,-0.47) (EG,-0.04)

2 0.5 
G1 (F,-0.02) (P,-0.01) (P,0.25) (F,-0.5)
G2 (F,-0.5) (P,-0.01) (F,-0.02) (P,0.25)
G3 (G,-0.03) (F,-0.02) (EG,-0.47) (G,-0.03)

3 0.2 
G1 (EG,0) (F,-0.02) (P,-0.01) (G,-0.03)
G2 (P,-0.5) (F,-0.02) (F,0.3) (EP,-0.5)
G3 (F,-0.02) (F,-0.5) (F,-0.02) (EG,-0.47)

(5)Derive the attributes weights.

Based on the model (15), derive the optimization attributes
weights (0.20,0.40,0.40)w  by applying the software of
Lingo 11.0.

(6)Rank the order of alternatives.

Ranking all the alternatives  1,2,3, 4iZ i  in accordance
with the integrated cloud prospect value:
1 2 3 413.781, 68.755, 15.045, 3.665,V V V V           and

thus the most desirable alternative is 4Z .

In order to compare the effectiveness of our approach with
the traditional 2-tuple linguistic MAGDM approach, we select
the approach of Wei[4], which is one of the classical 2-tuple
linguistic MAGDM approaches, as a comparison. We take
advantage of the same data in the throughout calculation
process which are shown in Table III. On the other hand, it is
worth noting that the attributes weights of Wei[4] are
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TABLE IV. COLLECTIVE DECISION MATRIX R

1Z 2Z

1

1G  2 88,10.96,0.26C  0 37.50,4.49,0.10C

2G  1 68.41,6.40,0.16C  2 88,10.96,0.26C

3G  2 99,10.35,0.26C  1 69.79,6.33,0.16C

2

1G  0 49.50,3.95,0.10C  1 30.59,6.40,0.16C

2G  0 37.50,4.49,0.10C  1 30.59,6.40,0.16C

3G  1 68.41,6.40,0.16C  0 49.50,3.95,0.10C

3

1G  2 99,10.35,0.26C  0 49.50,3.95,0.10C

2G  1 15.45,8.47,0.16C  0 49.50,3.95,0.10C

3G  0 49.50,3.95,0.10C  0 37.50,4.49,0.10C

3Z 4Z

1

1G  0 57.50,3.66,0.10C  1 68.41,6.40,0.16C

2G  1 58.25,6.91,0.16C  2 88,10.96,0.26C

3G  2 88,10.96,0.26C  2 99,10.35,0.26C

2

1G  1 38.63,5.67,0.16C  0 37.50,4.49,0.10C

2G  0 49.50,3.95,0.10C  1 38.63,5.67,0.16C

3G  2 88,10.96,0.26C  1 68.41,6.40,0.16C

3

1G  1 30.59,6.40,0.16C  1 68.41,6.40,0.16C

2G  0 57.50,3.66,0.10C  1 15.45,8.47,0.16C

3G  0 49.50,3.95,0.10C  2 88,10.96,0.26C

obtained by the maximizing deviation method, which does not
take into account the risk attitude of decision makers, as a
result, we take (0.20,0.40,0.40)Tw  which is just our
optimization attributes weights determined by step 5.

Table V shows the results obtained by the positive ideal
relational degree of each alternative of Wei[4] under good
status, medium status and poor status, respectively.

We find that from Table V there are three different results
under the given risk statuses. That is, the alternative 4Z is the
best under the good status or poor status, whereas the best
alternative is 3Z under the medium risk. Therefore, it can be
concluded that the approach of Wei[4] can’t derive a
uniformed conclusion under different risk statuses. Our
method, however, integrates the statuses of risks (good,
medium and poor) into a decision-making matrix by using
Prospect theory, and consequently can provide an exact
conclusion.

VI. CONCLUSIONS
This paper has investigated the fuzzy stochastic MAGDM

problems where the attributes values of the alternatives are 2-
tuple linguistic and the information of attributes weights is
incompletely known. An approach was provided which is
based on Prospect theory and Cloud model. A new 2-tuple

aggregation operator was developed so as to aggregate the
evaluation value into group’s comprehensive evaluation
information. In addition, considering the fuzziness and
randomness of information, a generating cloud method was

TABLE V. THE RESULT DERIVED BY THE METHOD OF WEI (2010A)

good（ 1 ） medium（ 2 ） poor（ 3 ）

1C  , 0.144L   , 0.320L   , 0.424L 

2C  , 0.286L   ,0.402N  , 0.438L 

3C  , 0.494L   , 0.098L   , 0.338L 

4C  , 0.072L   , 0.440L   , 0.300L 

Sort
order 4 1 2 3Z Z Z Z   4 1 2 3Z Z Z Z   4 1 2 3Z Z Z Z  

proposed that a 2-tuple linguistic is converted into a
corresponding normal cloud. Furthermore, based on Prospect
theory, THOWG operator and Cloud model, a new approach
was presented to solve the 2-tuple linguistic fuzzy stochastic
MAGDM problems. Finally, the feasibility and validity of this
approach were illustrated by an example.

In the further research about the 2-tuple linguistic fuzzy
stochastic MAGDM problems, it would be very interesting to
extend our analysis to the case of more sophisticated situation,
such as the dynamic group decision, etc. Nevertheless, we
leave that point to future research, since our methodology
cannot be applied to that extended framework, which will
result in more sophisticated calculation and which we cannot
tackle it here.
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