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Abstract 
An innovative accelerated integral equation method is 

proposed based on a fast search algorithm for both shared and 

non-shared faces among mesh elements. This method 

successfully accelerates the computational process of solving 

for the tetrahedral coupling coefficients. By using the 

proposed accelerated integral equation method, the efficiency 

of constructing the coupling matrix can be improved by more 

than 40% without decreasing computational accuracy, as 

demonstrated by analytical solutions, simulations and 

experimental examples. 

1 Introduction 
Induced magnetism, caused by the movement of ships, planes, 

and other metallic vehicles within a magnetic field, is one of 

the main threats to the security of naval vessels [1, 2]. It is 

also a primary factor hindering the development of high-

precision magnetic measurement technologies using sensors 

aboard these vehicles [3]. With regard to ship degaussing [4, 

5], mastering the characteristics of a vessel’s induced 

magnetic field is vital to realizing effective compensation 

methods. Marine and aerial magnetic surveys also suffer from 

induced magnetic fields as one of the main sources of 

interference [6, 7]. Due to the complex geometric features of 

vehicles, numerical methods, such as the finite element 

method (FEM) [8], the boundary element method (BEM) [9] 

and the integral equation method (IEM) [10, 11] have been 

effective tools for calculating the induced magnetism 

accurately. IEM may be more suitable for open-boundary 

magnetostatic field calculations that avoid meshing the air 

region (or the equivalent) [10-13].  

 

The numerical modeling of the induced magnetism caused by 

vehicles has resulted in a series of developments using IEM. 

In Ref. [14], by utilizing the surface integral calculation 

method and comparing the results with the volume integral 

method, the computation of the coupling coefficient matrix is 

simpler. In addition, the singularity in the integral is 

eliminated, while in the IEM models, the non-symmetric and 

dense coefficient matrix results in low computation efficiency. 

To overcome the disadvantages described above, accelerated 

approaches, such as ACA [15], FMM [11, 16] and the parallel 

computing method [17], have been applied to successfully 

realize large-scale magnetism computations. The ACA, FMM, 

and the parallel computing technique for IEM method are 

three independent methods (the parallel computing method 

can also be intergrated with the ACA or the FMM) for 

accelerating the magnetostatic field computation, and the 

memory cost can also be reduced by the three methods 

simultaneously. In the three fast computational methods 

above, considerable amounts of surface integrals are needed 

to complete the computational process. However, the repeated 

calculations of the surface integral of shared faces among 

adjacent elements has so far been ignored, an innovative 

accelerated method based on a fast search algorithm [18] for 

shared and non-shared faces is proposed here, and the 

proposed accelerated would be possible used to accelerate 

ACA, FMM and parallel computing technique for IEM 

furtherly in future work. 

 

In Section 2, the vector integral equation method based on a 

tetrahedral mesh is introduced. In Section 3, the theory behind 

the reduction of surface integral calculations will be 

demonstrated, and an approach for accelerated IEM based on 

a fast algorithm [18] for searching shared and non-shared 

faces will be proposed. Then, in Section 4, the analytical 

calculation of a sphere magnetized by a uniform applied 

magnetic field will be provided, along with a model for 

representing the magnetostatic fields of an irregular 

ferromagnetic object and a thin steel plate placed in various 

magnetic environments. These examples will help 

demonstrate the advantages and accuracy of the proposed 

accelerated IEM models. 

2 Vector integral equation method 
As shown in Figure 1, according to the IEM, when a 

ferromagnetic object is placed in a geomagnetic field, the 

induced magnetic flux density B  at an arbitrary point P  

outside the object can be expressed as [19] 
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where M  denotes the magnetization of the ferromagnetic 

object, 
PQr  represents the vector from the source point Q  to 

the field point P , 0  represents the permeability of free 

space, 
p  and 

Q  
 
represent the gradient operator to the 

field coordinate and the source coordinate, respectively, and 
V  represents the volume of the object. 
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Figure 1 Sketch of a magnetostatic computation 

 

To calculate the induced magnetic flux density B  created by 

the ferromagnetic object, the object should be discretized into 

N  elements that may be tetrahedral in shape. Eq. (1) 

becomes, 
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As far as the magnetization of each element is concerned, the 

constant, linear, and higher order shape functions can be used. 

For simplicity, the constant shape function is used in this 

computation, Then the field created by each volume element 

can be calculated using the equivalent surface distribution 

method [13], 
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where iS  represents the surface area of the volume element 

and in  represents the direction normal to the surface. When 

computing the induced field created by an external magnetic 

field, the object is usually divided into a sufficient number of 

uniform elements. Considering the relationship 

( 1) /  r rM B  and each of the N  field points that are 

placed at the barycenter of the corresponding tetrahedral 

element, the following system can be obtained, 
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where i  and j  represent the element numbers while ri  and 

rj
 denote the relative permeability of respective tetrahedral 

elements. Compared with other strong magnetic fields, the 

geomagnetic field is so weak that the relative permeability 

r  can be treated as a constant. Eq. (4) can then be 

transformed into a matrix form as follows 
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After solving the matrix system above, the magnetic flux 

density of each tetrahedral element can be obtained. The 

induced magnetic flux density B  at an arbitrary point P  

around the ferromagnetic object can be calculated based on 

Eq. (3). 

3 Accelerated 3D-Magnetostatic Field 
Computation Method 

According to Eq.(5), Solving the coefficient matrix S
j iP Q  

associated with each tetrahedral element is central to the 

problem of obtaining the internal magnetic induction iB  of 

each mesh element. To obtain the coefficient matrix, the 

integrated contributions to the match point (barycenter of 

each volume element is selected as the match point) of the 

four faces of each element must be calculated. Here, the 

ferromagnetic object is divided into tetrahedrons, and two 

ordinary elements, element ABCD and element ACDE, are 

demonstrated in Figure 2. An example of S
j iP Q  are 

calculated with the two elements above, 

4
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where iS  represents the surface area of the volume element 

ACDE, 
in  represents the direction normal to the surface, 

1, 2,3, 4( )
l

ls  represent the four triangle surfaces of the 

volume element ACDE, ( ) ( ) ( )
i l l lPQ P Q P Q P Qx x y y z z     r i j k , 

( , , )P P Px y z  is the barycentric coordinate of the volume 

element ABCD. Thus,  
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Surface integrals lxs , 
lys  and lzs can be computed 

analytically or by using numerical Gauss technique to obtain 

S
j iP Q

.The computation of the surface integral over ACD is 

required for calculating the coefficient matrices for both 

elements ABCD and ACDE, and case is the same when the 
coupling matrice between one of the two elements above and 

any one of other elements are calculated. Because the normal 

vectors for the two volume elements point in the opposite 

direction, the contribution from face ACD on the given point 

will be opposite. By calculating and saving the surface 

integrals of all the shared faces (number of surface integrals 

of all the shared faces can be reduced by 50%) and non-

shared faces firstly, efficiency of the coefficient matrices 

calculation can be improved. 

 
Figure 2 Neighboring tetrahedral elements  

of a ferromagnetic object 

3.1 Fast search algorithm for shared and non-shared faces 

Ferromagnetic objects can be meshed with Gmesh, 

Hypermesh or other mesh tools from commercial FEM 

software. Here, the mesh tool of the Flux3D program is used 

to mesh ferromagnetic objects. Two types of mesh data can 

be generated, either (1) the number and coordinates of nodes 

or (2) the number of mesh elements and associated nodes. A 

list of shared and non-shared faces can be acquired from these 

data. In fact, all the information needed regarding shared and 

non-shared faces can be found by pairwise comparison. 

However, because pairwise comparison is not efficient, a fast 

search algorithm [18] based on the concepts and principles of 

adjacency and incidence matrices for graph can be applied to 

identify the two types of faces. Because of the search process 

implemented with the transpose and multiplication for sparce 

matrice, the computational complexities and storage 

complexities of the search algorithm is ( )O N . At the same 

time, the shared and non-shared faces are numbered for the 

sake of using them to accelerate the conventional IEM[13, 20]. 

3.2 Accelerated method for IEM 

Based on the information of shared and non-shared faces, an 

accelerated method for IEM is proposed. In fact, the 

computational efficiency of the accelerated IEM is reflected 

by the calculation of coefficient matrices. Here, the 

computational procedures of the accelerated IEM are 

demonstrated in Figure 3. This accelerated IEM program uses 

MATLAB 2014 and was tested on a PC with an Intel Core 

(TM) i7-3770 CPU at 3.40 GHz and 16 GB RAM. 

 

 

 

 

 

 

 

 

 

 
  

 
 

 

 

 

 

Figure 3 Flowchart of the proposed accelerated IEM 

4 Calculations and verifications 

Three examples are provided here to demonstrate the 

proposed accelerated IEM algorithm. The first example is an 

analytical example where the induced field of a sphere is 

placed in a uniform external magnetic field. The second 

example is the magnetostatic modeling of an irregular object 

magnetized by an applied uniform external field. Finally, a 

simple experiment is executed with a steel plate to verify the 

numerical results of the magnetostatic field calculations using 

IEM acceleration.  

4.1 Analytical example 

An iron sphere with a radius of 50 mm and a relative 

permeability of 150 is placed into an external uniform field 

with 
0 34500 zB e nT . In computing the induced field 

caused by the ferromagnetic sphere, 101 spots are arranged 

along line 1 (as shown in Figure 4, from point P1 to point P2) 

equally. The analytical solution can be obtained following 

Ref. [20], which will be compared with the calculated results 

of the proposed method. The iron sphere is discretized with 

either 257, 499, 945, or 1250 nodes in four separate 

calculations. In each mesh condition, the induced field at all 
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spots is calculated by both conventional IEM and the 

proposed accelerated IEM. As shown in Table. 1, the numbers 

of mesh nodes (N1), elements (N2), public faces (N3), non-

public faces (N4), total faces (N5), computational time t1 

(conventional IEM), and computation time t2 (accelerated 

IEM) of the four mesh cases are displayed. For accelerated 

IEM, the reduction of the number of surface calculation 

required can greatly speed up matrix construction. In the four 

mesh conditions, the ratios of surface integrals needed for 

accelerated IEM and conventional IEM are 1533/2588, 

4370/8176, 8819/16724 and 11904/23040. The ratios of 

computation time for matrix construction between accelerated 

IEM and conventional IEM are 358.3/579.4, 3218.2/5715.1, 

12848.1/26394.9 and 22995.35/54420.7, which demonstrates 

the efficiency of our proposed accelerated IEM technique. 

 

The graphs for the induced magnetic field strength using the 

analytical solution (labeled Analytical×), conventional IEM 

(labeled NORMAL×), and the proposed algorithm (labeled 

FAST×) with 257, 499, 945, or 1250 nodes are shown in 

Figures. 5-7 and Figure13. As the number of mesh nodes 

increases, the magnetic flux, zB , calculated using either 

accelerated or conventional IEM approaches the analytical 

solutions. In Figures 8, 10 and 12, the X-component, Y-

component, and Z-component of the induced magnetic flux 

intensity ( xB ,
yB , zB ) are displayed, respectively, and the 

errors of the three components at each calculated point are 

shown in Figures 9, 11 and 13, respectively. The errors in xB  

and zB  are below 1.5%, and the errors of 
yB  are less than 

2nT (analytically, 
yB  is zero at any point in Line 1). 

 
Figure 4 Map of the ferromagnetic solid sphere 
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Figure 5 Magnetic flux density Bz with 257 nodes 
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Figure 6 Magnetic flux density Bz with 499 nodes 
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Figure 7 Magnetic flux density Bz with 945 nodes 
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Figure 8 Magnetic flux density Bx with 1,250 nodes 
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Fig. 9 Error in Bx with 1,250 nodes 
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Figure 10 Magnetic flux density By with 1,250 nodes 
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Figure 11 errors of By with 1,250 nodes 
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Figure 12 Magnetic flux density Bz with 1,250 nodes 
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Figure 13 errors of Bz with1,250 nodes 

Table. 1 parameters of the conventional IEM and the 

accelerating IEM 
N1 N2 N3 N4 N5 t1/s t2/s 

257 647 1055 478 1533 579.4 358.3 

499 2044 3806 564 4370 5715.1 3218.1 

945 4181 7905 914 8819 26394.9 12848.1 

1250 5670 10776 1128 11904 54420.7 22995.4 

4.2 Simulation example 

As shown in Figure 4, a solid, irregularly shaped iron object 

with a relative permeability of 150 is placed into an external 

uniform field 0 34500 zB e nT . The coordinates of the 

points in Fig. 14 are ( 10, 50, 10)  A , ( 10, 50,10) B , 

(10, 50, 10) C , (10, 50,10)D , (10,20,10)E , 

(0, 80, 0)F , 1(0, 100,20)P  , 
2(0,100,20)P . The 201 

field points are arranged equally along Line 2 (as shown in 

Figure 14, extending from P1 to P2). Using the mesh tool of 

Flux3D with 1061 nodes and 3739 elements, the three 

components of the magnetic flux of the irregular object are 

calculated by the conventional method and the proposed 

accelerated method. For conventional IEM, the number of 

surface integrals is 14596, and it takes 20296.7 s to construct 

the system matrix. On the other hand, the accelerated IEM 

uses 8262 surface integrals and can construct the system 

matrices utilizing 6694 shared faces and 1568 non-shared 

faces in 12163.1 s, which is approximately 60% of the time 

required for the conventional method. 

In order to verify the accuracy of the accelerated IEM 

algorithm, each point was also calculated using Flux3D, and 

the results were compared with those from conventional IEM 

and the proposed accelerated IEM. The curves, the flux 

(labeled Flux×), the conventional IEM (labeled NORMAL×) 

and the accelerated IEM (labeled FAST×) are provided in 

Figures 15-17. Here, the values of the Flux3D simulations are 

taken as the baseline. The maximal errors of 
yB , zB  with 

the conventional IEM and the accelerating IEM are 2.31%, 

and the errors of 
yB  are less than 15nT (the analytical 

solutions 
yB  of each calculating field point is zero), which 

demonstrates the accuracy of the proposed accelerated 

method. 
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Figure 14 Map of the solid irregular object 
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Figure 15 Bx of the solid irregular object 

-100 -50 0 50 100
-10000

-5000

0

5000

x/mm

B
y

 /
 n

T

FluxY

FAST1061Y

NORMAL1061Y

-1 0 1
100
200
300

 
Figure 16 By of the solid irregular object 
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Figure 17 Bz of the solid irregular object 

4.3 Experimental example 

As shown in Figure 19, a steel plate with a relative 

permeability of 100, a length of 1000 mm, a width of 200 mm, 

and a thickness of 27 mm is placed in a geomagnetic field 

with a horizontal component of 34484.6 nT and a vertical 

component of 34800 nT. The 31 measured points are located 

uniformly along Line 3 (from P1 to P2). In the laboratory 

(Figure 18), the steel plate is placed on a nonmagnetic carrier 

on a track. The axes of the triaxial magnetic sensors are 

aligned along the same as the steel plate coordinates system 

shown in Figure 19, and the sensor is located on Line 3 to 

provide reference values. When the nonmagnetic carrier 

moves over the magnetic sensors, the magnetic anomaly of 

the steel plate can be recorded. To eliminate the influence of 

the permanent magnetization, the steel plate is placed in four 

different orientations. Based on the measured field in the four 

orientations, the longitudinal and vertical components of the 

induced magnetization produced by horizontal component of 

the geomagnetic field (labeled ×Xix and ×Zix in Figures 20-

21) can be obtained and can also be compared with the 

calculated field.  

In the numerical calculations, the steel plate is meshed with 

1445 nodes and 3957 tetrahedral elements. Using accelerated 

IEM, the number of surface integrals required is 9357, and the 

time for obtaining the system matrix is 15830.2 s. In contrast, 

solving for the system matrix using conventional IEM 

requires 15828 surface integrals and 25198.3 s. The three 

components of the magnetic flux are also calculated using 

Flux3D. In Figures 20 and 21, the normalized measured 

values (labeled Mea×), the normalized values from 

conventional IEM (labeled NORMAL×), the normalized 

values from accelerated IEM (labeled FAST×) and the 

normalized values from simulations using Flux (labeled 

Flux×) are displayed. Taking the values of the experiments as 

the baseline, the maximal errors using Flux3D, conventional 

IEM, accelerated IEM results are all less than 5.50%. 

 
Figure 18 The measurement of the thin steel plate 
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Figure 19 Map of the measurement of the steel plate 
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Figure 20 Normalized value of Xix of the thin steel plate 
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Figure 21 Normalized value of Zix of the thin steel plate 

5 Conclusion 

In this paper, based on the shared faces among the 

neighboring mesh elements, a new accelerated IEM algorithm 

is proposed that can reduce by a factor of (N3+N4)/(2N3+N4) 

(more than 40%) the number of surface integrals that are 

required when the system matrix is constructed. The 

analytical, simulation and experimental examples here 

demonstrate the improved efficiency and computational 

accuracy of the proposed accelerated IEM. In future work, the 

efficiency of magnetostatic computation would be further 

improved by combining the proposed IEM with other fast 

computational methods such as ACA, FMM and parallel 

computing technique, which can be beneficial for large-scale 

magnetostatic field modeling. 
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