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Abstract 
 
Closed-loop analysis method is proposed for pilot induced 

coupling with helicopter flight control system in closed 

loop. Combining with the longitudinal identification model 

of a certain helicopter, McRuer pilot model, designed 

stability augmentation system and frequency domain model 

are established for pilot induced coupling analysis. By 

combining the basic analytical methods of the classical 

automatic control theory and the actual backgrounds, the 

properties of the root locus, the characteristics of the time 

domain and the frequency domain are studied. The 

properties as well as the reasons of the PIO are also 

analyzed in comparison. Meanwhile, feasible measures to 

improve the PIO are discussed considering the controller 

design and pilot's manipulation. Results show that the 

analysis method proposed can not only reveal the physical 

nature of PIO qualitatively, but also quantitatively. The 

analysis has theoretical reference significance in both flight 

control system design and pilot's manipulation applications. 
In the designing process of modern helicopter, high gain as 

well as broad band FCS has been an important target of the 

advantaged helicopter  

 

designing in order to get the better handling quality. 

However, while the pilot and the FCS are in the control 

circuit, when the pilot is in the closed loop and the effect it 

causes must be concerned in the design of the FCS, or the 

quality and characters of the helicopter closed loop system 

will be weaken, even to cause the RPC oscillation. It may 

give a threat to the safety of flight.  

In order to analyze the effect of the pilot in the operational 

circuit, in the 1940s, the academic field has started to 

research the pilot modeling, which is relatively mature now. 

For example, McRuler came up with the Crossover Model, 

this model shows that the open -loop total transfer function 

of the situation when pilot is in the handing circuit with the 

frequency characteristics of ( ) es
cH s e s            

(1) 

ሺ	߱௖ is the crossover frequency, is the equivalent lag 

time). The pilot guarantees the stability of the closed loop 

operation by adjusting the gain to make the 	߱௖  to the 

highest cut-off frequency. This model was proved to be an 

effective model, which is widely used in the analysis of the 

RPC and PIO. Hess came up with the Structural Model, 

which uses the visual perception, perception of 

neuromuscular system as well as vestibular system 

perception to be the feedback signal, describing the 

man-machine interaction move of double closed feedback 

active operation of the pilot. Mayo built the Biomechanics 

of feed into the model, the model shows the interactive 

transfer behavior of the RPC, that means the oscillation of 

the helicopter is transferred to the pilot by the joystick in a 

passive way, then the pilot makes a feedback with the stick 

to the helicopter by the form of feed into the biological 

mechanics, this model is actually a passive handling model. 

In common cases, the oscillation caused by the active 

control of the pilot belongs to the low frequency field, 

which is about 1-2 Hz; but the passive control belongs to 

the high frequency field, which is about 2-8 Hz [2].
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channel of the helicopter is:    The identified model can 

reflect not only the direct correspondence of the body roll 

angle  and the driving rod longitudinal manipulated 

variable (percentage) B , but also the specific mode 

characteristics of the helicopter. There exists the plural zero, 

it is so nearly to the plural pole which is correspondent to 

the pendulum vibration response-control input pair, it 

reflects the dynamic key characteristics of the coupled 

waving the shimmy- body system. The equivalent time 

delay means the control system for hydraulic and 

transmission delay which are known. 

 

1.2 The pilot model 
As a result of the conciseness and matureness of the 

Mcruler pilot model, and the physical meaning is conscious, 

this model is applied to be the RPC-pilot model. The 

transfer function is as follows: 

                

      (2)              

S is the Laplace operator; is the time delay which is 

correspondent to nerve conduction and motivation, it is 

usually about 0.13-0.30; is the neuromuscular 

delay equivalent, it means that the pilot control rate is less 

than the one of the pole, which is usually 0.10; is pilot 

control gain, it is the parameter which is needed to be 

adjusted to guarantee the best manipulation, it is usually 

about 0-100; is the lead compensation time constant 

which is needed in the forecast to the process of the 

operation by the pilot( ), it reflects the value of the 

pilot mental load, it is usually 0-0.25; is the time delay 

of the transfer of the central information and course of 

working, it reflects the value of the physical strength load of  

 

(3) 

pilot, usually 0-20;  is the adjustable 

parameter part of the model, which is amount to an 

advanced-lag link and will be adjusted by the pilot in flight. 

The closed-loop bandwidth when the pilot is in the circuit is 

usually less than 4rad/s, so if there exits an unstable mode 

frequency which is higher than this value, it is very difficult 

for the pilot to take corrective actions. 

 

1.3 The FCS model 
In order to build a whole closed-loop system and guarantee 

that the rationality of the controller design, a flight control 

stability augmentation system is designed in this article, the 

control structure is as follows: 

 1

1
p d

i

k k s
u K

T s  


   


              (4) 

In the equation above, the normal parameter of the 

controllers is: 0.27838
P

k   .The control responses of 

the inner stabilization loop Gin are showed in Figure 2. It 

can be concluded that the overshoot is 191%, the steady 

state error is 0.5323 from the step response of the system, 

which indicates that the overshoot and the steady state error 

are relatively large, and there exists relatively violent 

oscillation in the initial stage of the system; However it also 

can be concluded that although the system is finally towards 

stability, it should be adjusted and improved from the 

respects of the dynamic as well as the steady state response 

according to the root locus figure and the frequency domain 

characteristics. The conclusion indicates that the system 

can’t be ideally stable with the P-mode controller. So in 

order to have a good balance with the steady state 

characteristics and the dynamic characteristics, the FCS is 

also subject to be improved, so that the contradiction 

between the two aspects above can be improved, finally the 

whole performance of the system can be more optimized. 
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(2) 

 

(3) 

 
(4) 

Fig. 2 Control responses of Gin 

      

2 The analysis of the reasons of the PIO 
 

The responses of the helicopter with the FCS and the pilot 

model are showed in Figure 3. Next part are the analysis of 

the PIO according to the simulation with three analysis 

methods of the classical control theory, the time domain 

analysis, the root locus analysis and the frequency domain 

analysis. The analysis are also combined with the actual 

backgrounds. 

 

2.1 The time domain analysis 
According to the time domain analysis of the classical 

control theory, there are some main respects of analysis to a 

certain system, which are the steady state analysis and the 

dynamic state analysis. The steady state progress indicates 

the degree of repetition of the output to the input, it can 

reflect some information on steady state error. And the 

dynamic characteristics indicate more information such as 

damping condition and the rate of the response based on the 

above. The state parameter indicators in the regulating 

progress are focused on. In common cases, a certain 

automatic control system should be “steady, accuracy and 

fast”, the parameter indicators such as the rise time ݐ௥, the 

setting time ݐ௦, the overshootσ, the peak time ݐ௣ and the 

steady state error Δ are also used to describe the steady 

state and the dynamic state characteristics. 

In common cases, the step response signal is used to be the 

classical input signal of the control system to have a 

research and comparison of the characteristics of all kinds 

of control systems. The step response curve showed in 

Figure 3 as below shows that the divergent state happens in 

the initial stage of the system of the helicopter with the 

P-mode controller with the pilot model, that is the unsteady 

state, and the largest amplitude is as about 2 times as the 

one of the steady state. The overshoot reaches 61.5%. The 

unsteady state is the appearance of the PIO in the time 

domain, which is also the reason of the oscillation. It can be 

concluded from the figure that the rise time of the system is 

0.522s, the setting time is 293s, the oscillation starts in the 

initial stage of the system as a result of the participation of 

the pilot delay link, the amplitude decreases as the time 

goes by, and about 293s later the system turns to be steady 

gradually. Of course the oscillation will do harm to the 

characteristics of the system, especially when the helicopter 

is going to set up, the oscillation may have a threat to the 

life of the pilot. In addition, the setting time is so long that it 

can cause some dangerous accidents easily. According to [1], 
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the dynamic characteristics is usually considered as a kind 

of pure gain, in this case to the whole system of the 

helicopter, the response rate increases and the rise time as 

well as the setting time decreases so the dynamic 

characteristics are relatively ideal and optimistic, shows in 

Figure 3. However, the overshoot and the steady state error 

will inevitably increase so as to cause the unsteady state of 

the whole system, which is called the PIO. Besides, the 

figure infers that the final value of the system is 0.841, 

which is not the value 1 that it should be in the normal cases. 

It indicates that the steady state error still exist in the system, 

that is to say the system can not reach the much accurate 

steady state. 

 

Fig. 3 Response of time domain 

2.2 The root locus analysis 
According to [2], as to the steady analysis of the gain of the 

system, the motion modes of the helicopter can be 

considered as the appearances of all kinds of integrated 

effects of modes, each kind of mode involves special 

characteristics, such as the mode frequency, damping, and 

the capacity of resisting disturbance and so on. So the actual 

motion condition of the helicopter is determined by the 

characteristics of these modes. The locus which changes 

with the parameters of the closed-loop poles can be 

determined by observing the root locus of the modes 

according to the distribution of the open-loop zeros and 

poles when the parameters of the systems changes. It is 

convenient and accurate because the effect tendency of the 

changes of the parameters of the system to the closed-loop 

poles can be concluded by simple calculation when the root 

locus analysis is applied. This kind of qualitative analysis 

values a lot in the research of the system characteristics and 

the reasonable methods of improving the characteristics.   

Figure 4 shows us the root locus of the system with the pilot 

model, it can be concluded that a certain part of the root 

locus exists in the right of the complex plane, some 

closed-loop poles exists separately in the imaginary axis 

and the right plane. According to the Routh Criterion and 

the Root Locus steady state Criterion, it can be concluded 

that there are unstable responses in the system, and the 

system is unsteady. According to [2], there are the phugoid 

mode and the pitch subsidence mode in the system now, and 

the characteristics of the phugoid will cause the decrease of 

the system damping, which can lead to the unsteady state 

easily, that is the oscillation. With the appearance of these 

two modes, the center of gravity of the helicopter happens 

to change, so do the moment of forces. It can lead to the 

opposite phenomenon of the short period mode. So from the 

aspect of the complex plane of the root locus, the reason of 

the PIO is also very obvious, that is the changes of the 

helicopter mode which causes the changes of the whole 

characteristics and state. Then the PIO happens.   

 

Fig.4  Rlocus mode figure 

        

2.3 The frequency domain analysis 
According to the frequency domain stability criterion, the 

pilot-rotorcraft system belongs to a kind of 

non-minimum-phase system. From [22] and the Bode 

diagram as well as the Nyquist curve in Figure 5, it can be 

concluded that the phase margin of the system is -19.3deg, 

the magnitude margin is -25.8dB, which are all negative. 

According to the Nyquist stability Criterion, the equation 

R=P-Z is not zero. So from the perspective of the frequency 

domain stability, the system is not stable, that is the 

appearance of the PIO. 

According to [1], in common cases during the flight, the 

reasons of the PIO are usually:  
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