
Parallel Design and Performance Optimization based on OpenCL

Snort
Hongying Xie*, Yangxia Xiang

†
, Caisen Chen

†

*Unit 61175, China
†
Academy of Armored Force Engineering, China

Keywords: OpenCL snort, GPU, AC algorithm, parallel

programming

Abstract

With the rapid increasement of the network speed and number

of threats which hide in the network poses enormous

challenges to network intrusion detection systems (NIDS). As

the most popular NIDS, snort can run as a single threaded

application. However, it may not be able to detect intrusions

in real-time especially in networks with high traffic. In this

paper, a parallel module OpenCL Snort (OCLSnort) is

introduced: realize parallel pattern matching algorithm using

GPU and innovate new architecture which is more suitable

for the parallel algorithm. The result showed that OCLSnort

can detect the attacks correctly and effectively, the new

system not only has markedly improved on throughput, also

effectively reduced the CPU utilization and memory usage.

1 Introduction

Intrusion detection systems (IDSs) are of critical importance

to the integrity of computer networks due to massive growth

in the data transmission speed and the frequency of attacks.

With the rapid development of computer network, more and

more data need to be searched, analyzed and detected whether

they have threat or not. Such as network monitoring

application snort, which is an open source network intrusion

prevention and detection system (IDS/IPS) developed by

Sourcefire. Combining the benefits of signature, protocol, and

anomaly-based inspection, and as so far, Snort is the most

widely deployed IDS/IPS technology worldwide [1].

In snort, they are using pattern matching algorithm such as

AC, BM algorithm to detect thread. Pattern matching is one

of the core operations used by applications such as traffic

classification [2], intrusion detection systems [3] and content

monitoring filters [1]. Unfortunately, packet detecting part

occupies the most of the time of the whole processing time in

modern NIDSes [4,5] and this operation has significant

overheads in terms of both memory space and CPU cycles, so

when the data or packet which will be detected is very large,

there will be packet-losing problem about snort.

Several research efforts have used GPU for security purposes,

including cryptography [6], data carving [7] and intrusion

detection [8]. And Jacob and Brodley were the first that tried

to use the GPU as a pattern matching engine for NIDS in

PixelSnort [8]. They changed KMP algorithm to parallel

version but the performance result is not very ideal.

This paper is organized as follows: In Section 2 and 3, two

methods to realize OpenCL snort are presented. In section 4,

we evaluate our implementation and compare with the

original snort. Experimental results and analysis are given.

Finally, conclusions are given in Section 5.

2 Architecture

The overall architecture of Snort NIDS is shown in Fig.1 and

the OpenCL version Snort’s architecture is showed in Fig.2.

From Fig.1 and Fig.2, there are some differences between the

original snort and the new version snort, one is collecting

packets at packet classification part; the other is detecting

packet content at packet detecting part.

P a c k a g e C a p t u r e

P a c k e t D e c o d e r

P a c k e t

C l a s s i f i c a t i o n

S N O R T

D e t e c t i o n

O u t p u t S t a g e

S n i f f i n g

A l e r t / l o g s

P
a

c
k

e
t S

tr
e

a
m

 Fig.1 Packet process flow in original snort

M u l t i - P a c k e t s C a p t u r e

M u l t i - P a c k e t s D e c o d e r

M u l t i - P a c k e t s C l a s s i f i c a t i o n

O p e n C L S N O R T

P o r t G r o u p

O u t p u t S t a g e

P a r a l l e l D e t e c t i o n

… P o r t G r o u p

P
a

c
k

e
t
 S

t
r

e
a

m

S n i f f i n g

A l e r t / l o g s

 Fig.2 Packet process flow in OpenCL snort

2.1 Packet detecting using OpenCL AC algorithm

For the multi-pattern matching algorithm, the first thing is to

build DFA such as Fig.3, and this section is finished before

2nd Joint International Information Technology, Mechanical and Electronic Engineering Conference (JIMEC 2017)

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Computer Science Research, volume 62

644

the beginning of the packet detected in snort. In our design of

the OpenCL version Snort, the realized DFA is represented as

a two-dimensional state table array that is mapped on the

memory space of the GPU. The dimensions of the array are

equal to the number of states and the size of the alphabet (256

in our case), respectively. Each cell contains the next state to

move, as well as an indication of whether the state is a final

state or not.

00

11 22 33 44

55 66

77 88 99

h e r s

i s

ehs

Fig.3 AC State Machine of Patterns “he”, “hers”, “his”,

“she”

 Fig.3 shows a state machine of patterns which used in our

OpenCL AC algorithm, from this figure we can see that the

difference between original AC state machine and OpenCL

AC state machine is that whether it is needed about failure

transitions. The failure transitions are used to back-track the

state machine to recognize patterns in any location of an input

stream. Given a current state and an input character, the

original AC machine first looks up the valid transition table to

check whether there is a valid transition for the input

character; otherwise, the machine looks up the failure

transition table and jumps to the failure state where the failure

transition points. Then the machine regards the same input

character until the character causes a valid transition.

In our OpenCL version snort, we used OpenCL to change the

AC algorithm for parallelism based on PFAC [9]. The idea of

the parallel algorithm of AC is: Give an input stream have N

byte, we will create N threads corresponding to N byte. And

for each thread, it is only responsible for identifying the

pattern starting at the thread starting position. So in OpenCL

AC algorithm, the failure transitions of the AC state machine

can all be removed as well as the self-loop transition of the

initial state. And the whole process of the OpenCL AC is

showed by Fig.4.

Fig.4 OpenCL AC Algorithm Execution Process

There are several characteristics of the OpenCL AC algorithm.

First, although it creates huge amounts of threads, most

threads have a high probability of terminating very early

because a thread in OpenCL AC is only responsible for
matching the pattern beginning at its starting position. Second,

the maximum detection length of each thread is the maximum

length in whole patterns, and based on this, when the larger

the input stream is, the faster the detect speed is. And finally,

the failure transitions are all removed when we are using

OpenCL AC, and this simplifies the algorithm and the thread

can detect the input stream automatically without rollback.

2.2 Packet collecting and transfer to GPU

Before the packet detecting in GPU, the first thing must to

consider is how and how many packets will be transferred

from the network to the GPU memory. The simplest method

is according to the original snort architecture, transfer one

packet to GPU for processing once time. However, as we

know, the TCP or UDP packet size is usually hundreds byte,

the performance is much better batching many small transfers

into a large one than making each transfer separately [16].

Thus, we realized the two methods (1) using original snort

architecture, transferring one packet to GPU once time, and (2)

change packet classification part, transferring more than one

packets to GPU once time and get the performance

comparison based on two methods.

As we know, the process flow of original snort is showed as

Fig.1: capture a packet from network once time, then packet

analysis and classification, detecting packet and output the

result finally. Using method (1), the process flow can be

changed as follows: capture a packet from network, packet

analysis and classification is not changed, then transfer the

packet to GPU and detecting it using OpenCL AC algorithm,

then transfer the results to CPU and output the result finally.

So using method (1), we changed Detection part, using

OpenCL AC take the place of original ac algorithm and the

other part of snort’s architecture are not changed, processing

packet one by one.

And using method 1, the performance improvement is not

exciting, there are two reasons: (1) the DMA time occupied

most of the time; (2) the input stream transferring to GPU

only have hundreds byte each time. It does not make full use

of GPU resources. Based on this, we proposed a new method

that can transfer more than one packets to GPU, the

architecture of OpenCL Snort are showed by Fig.2.

From Fig.2 we can see the difference between OpenCL Snort

and original snort is processing packet number once time. In

OpenCL version Snort, we change the interface to realize

capture multi-packets at the beginning of snort and then deal

with packets, transfer multi-packets to GPU once time, and

finally output alerts/logs.

3 Implementation

In this section, we are showed the implementation details

about the OpenCL version snort. In snort, they are using

different rules to detecting whether the packet has threatened

or not according to packet type. Different rules create

different state transition tables. So we are focus on the

packets collecting and the state transition tables correspond to

packets part when using method (2) transfer multi-packets to

GPU once time.

3.1 Transferring a Single Packet to GPU

In this approach, when capturing a packet from network, snort

will decode and classify it, then send it to GPU for detecting,

send the result to CPU and finally output the result.

Advances in Computer Science Research, volume 62

645

Assume the packet has N characters, the algorithm will create

N threads in GPU if the device has this ability, and else they

will create maximum threads which under the device’s ability,

then each thread will loop many times to detecting the whole

packets. The process flow is showed by Fig.5.

Date

Cache

Date

Cache

Pkt c1 c2…cn

PE1 PE2

Local Memory

Work-group1Work-group1

Date

Cache

Date

Cache

Pkt c1 c2…cn

PEn

Local Memory

Work-groupNWork-groupN

Instuction Unit

AC Func

Instuction Unit

AC Func

State Transition TableState Transition Table

GPUGPU

Fig.5 One Packet to GPU

This method is very simple, because there is only one packet,

and the state transition table which transferred to GPU also

has one. So this method need not to find out which state

transition table is corresponding to which packet. A drawback

of this approach is that the input stream is very small and the

DMA time occupied most of the time, so the GPU is not

utilized effectively.

3.2 Transferring Multi-packets to GPU

In this approach, we will mark the packets which we

interfered to GPU as unique packetID, and give a unique

tableID for each state transition table which finished creation

process and transfer all the state transition tables to GPU. The

whole process will be finished at the initialization phase of

snort.

Using this approach to detect packets, the way to creating

threads is the same as method (1), and the difference is the

packet must correspond to the state transition table. And this

could be solved adding elements packetID and tableID to

struct ACSM, and we will also transfer those elements to

GPU. In the OpenCL algorithm, we must to judge the packet

boundaries in order to get the correct results. The process

flow is showed by Fig.6, and example of packets collecting

process is showed by Fig.7. From Fig.7, each packet

corresponds to a state transition table, so when we transfer

packets to GPU, we must to determine the transition table’s

address corresponding to each packet.

Although this method is complicated comparing with method

(1), the input stream transferring into GPU once time is much

more than method (1), and the GPU is utilized effectively.

Date

Cache

Date

Cache

Pkt C1 c2…cn

PE1 PE2

Local Memory

Work-group1Work-group1

Date

Cache

Date

Cache

Pkt C1 c2…cn

PEn

Local Memory

Work-groupNWork-groupN

Instuction Unit

AC Func

Instuction Unit

AC Func

GPUGPU

Global MemoryGlobal Memory

State Transition Table1State Transition Table1

State Transition Table2State Transition Table2
…………

State Transition TableMState Transition TableM

index 0

index 1

index 2

index n

pkt 0 pkt 1 pkt 2 …… pkt N

T0 T1 Tx …… TMT2 …state transition table

Fig.7 Packet Collecting

4 Evaluation

Pattern matching is the most critical operation in the snort

system. Usually pattern matching algorithm can be classified

into single pattern matching algorithm (such as KMP) and

multi-patterns algorithm (such as AC).

In this section, we explore the performance of our

implementation. We realize the two approaches in Snort and

compare the two methods with the original snort respectively.

In processing multi-packets method, we change the parameter

about the collecting packet number once time then get the

average time about processing one packet.

In our experiments we used an AMD A10-4600m computer,

the CPU in this computer is 2.3GHz APU with Radeon™ HD

Graphics 4 processor , 8G memory and GPU is AMD Radeon

HD 7660G card, the operating system is Ubuntu 12.04 64-bit.

We get the packets data LLS DDOS 1.0-inside.dump from

MIT Lincoln Laboratory [17] as the detected data, we also

using snort to dump some small packets date set using the

detected data LLS DDOS 1.0-inside.dump, such as contain

200 packets date set, 1000 packets date set, 10000 packets

date set and 20000 packets date set, and we read the packets

from disk rather than network in order to get the same speed

of capture packet in different experiments. We also using the

default rules file when using different version snort and this

can ensure the correctness of the result.

For all experiments, we disregard the time spent in the

initialization phase of snort as well as the log of the alerts to

the disk or terminal. Even though it only takes just a few

seconds to load rule files and build its internal structures. And

we used the full AC implementation to measure the

performance in original snort.

4.1 Performance Comparison between One Packet

OpenCL snort and Original snort

In this experiment, input1, input2 and input3 are three

different size detected packets and the packets size is 200,

1000 and 10000 respectively. We change the input packet

numbers to get the performance data about one packet

OpenCL snort and original snort and the performance data is

showed by Fig.8. From Fig.8, (1) with the increase of input

packet size, the throughput of two methods becomes large; (2)
Fig.6 Multi-Packets to GPU

Advances in Computer Science Research, volume 62

646

using one packet OpenCL snort, the throughput is not batter

than the original snort’s throughput, because the local

memory is not large enough, the state transition table is stored

in Global memory, when judge the current character meet the

conversion criteria or not each time, the algorithm must

access the global memory once time; and most of threads are

terminated at the beginning of the algorithm, and the GPU’s

utilization is not high.

Fig.8 Performance Comparison

4.2 Performance Analysis about Multi-Packets OpenCL

snort

In this experiment, we get the performance comparison about

multi-packets OpenCL snort and one packet OpenCL snort.

Before this comparison, first thing we must to ensure is when

we transfer how many packets to GPU, the algorithm will get

the best performance and maximum throughput. Fig.9 showed

the algorithm’s performance comparison when transferring

different number of packets to GPU. From Fig.9 we can see

with the number’s difference, the throughput has some

difference as well. When the number which transfers to GPU

once time is 30, the throughput is 4.78Gbits/sec, when the

number is 100, the throughput is up to 6.43Gbits/sec. And

when the number changes from 150 to 200, the throughput

grows slowly and then it has a downward trend. So we select

200 as the number which transfers to GPU once time.

Fig.9 Performance Comparison of Multi-packets OpenCL

Snort

The next experiment we are focus on is the performance

comparison about the three version snort: original snort, one

packet OpenCL snort and multi-packets OpenCL snort. And

the result is showed by Fig.10. In this figure, input1, input2

and input3 are three different size detected packets as the

same as Fig.9, the packets size is 150, 1200 and 10000

respectively. From the result, we can see the multi-packets

OpenCL snort’s throughput is about two times faster than

other two methods. And the GPU’s utilization in multi-

packets OpenCL snort is much higher than the one packet

OpenCL snort.

Fig.10 Performance Comparison on Different Versions

5 Conclusions

In this paper, we have proposed two OpenCL version snort,

one packet OpenCL snort and multi-packets OpenCL snort in

order to accelerate packet detecting by GPU. And the result

showed that although one packet OpenCL snort’s throughput

is about 20% slower than original snort, multi-packets

OpenCL snort is about 2 times faster than original snort, and

this system was able to achieve a maximum throughput of

6.758Gbit/s.

Acknowledgements

This work is supported by the National Natural Science

Foundation of China under Grant No. 61402528, all support

is gratefully acknowledged.

References

[1] Snort: : Home Page. http://www.snort.org/.

[2] Application Layer Packet Classifier for Linux. http://17-

filter.sourceforge.net/.

[3] Clam AntiVirus. http://www.clamav.net/.

[4] S. Antonatos, K. Anagnostakis, and E. Markatos.

Generating realistic workloads for network intrusion

detection systems. In Proceedings of the 4th ACM

Workshop on Software and Performance, (2004).

[5] J. B. D. Cabrera, J. Gosar,W. Lee, and R. K. Mehra. On

the statistical distribution of processing times in network

intrusion detection. In 43rd IEEE Conference on

Decision and Control, 75-80, (2004).

[6] D. L. Cook, J. Ioannidis, A. D. Keromytis, and J. Luck.

Cryptographics: Secret key cryptography using graphics

cards. In Proceedings of RSA Conference,

Cryptographer’s Track. 334-350, (2005).

[7] G. G. R. I. Lodovico Marziale and V. Roussev. Massive

threading: Using GPUs to increase the performance of

digital forensics tools. Digital Investigation. 73–81.

[8] N. Jacob and C. Brodley. Offloading IDS computation to

the GPU. In Proceedings of the 22nd Annual Computer

Security Applications Conference on Annual Computer

Security Applications Conference, Washington, DC,

USA, IEEE Computer Society. 371–380, (2006).

[9] Lin CH, Tsai SY, Liu CH, Chang SC, Shyu. JM

Accelerating string matching using multi-threaded

algorithm on gpu. In: GLOBECOM, 1-5, (2010).

[10] C. IOS. IPS deployment guide. http://www.cisco.com/.

Advances in Computer Science Research, volume 62

647

http://www.snort.org/
http://www.clamav.net/
http://www.cisco.com/

