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Abstract—The purpose of this study is to design a 3D navigation 
strategy with 2D ultrasonic images, with the assumption that the 
internal target trajectory could be evaluated with extern surrogate 
signals. This paper first proposes a simple 3D navigation strategy 
and then designs a fast tumor tracking system that exploits 
learning based methods, which learns the mapping relation 
between the external surrogate signals and the internal tumor 
trajectory. This paper uses our own retrospective clinical data to 
test the developed system. The experimental results show that this 
system has the potential to implementing high accuracy tumor 
tracking and navigation. 

Keywords-learning-based; tumor tracking; surrogate signals; 
respiratory motion. 

I. INTRODUCTION 

A. Motivation 

In interventional ablation surgery, radiofrequency or 
microwave is commonly used to inactivate malignant cells to 
treat cancer. Ablation therapy is actually a palliative, curative 
and adjuvant treatment strategy. Its operating principle is to take 
the highest toll on the tumorous target while preserving 
surrounding healthy tissues. However, tumor position in the 
epigastric areas are often affected by physiological activities 
such as respiration, gastrointestinal peristalsis, and heartbeat. 
Indeed, average craniocaudal displacement of liver could reach 
10mm to 25mm for shallow breadth, and 37mm to 55mm for 
deep breadth [1, 2, 3], far higher than the tolerable precision 
(millimeter scale) of clinical surgeries. FIGURE I. shows a clear 
respiratory motion effect on liver position. In these cases, 
without any navigation assistance, uncertainties of target 
positioning force surgeon to expand the planning treatment 
volume around the real target volume, which increases the 
volume of healthy tissues being inactivated. Therefore, real-time 
tumor tracking system plays a significant role in ablation surgery. 

 
(a) deep inhale (b) deep exhale 

FIGURE I. THE UPPER-ABDOMINAL ORGAN POSITION AT THE END 
OF INSPIRATION AND EXPIRATION. 

B. Related Works 

The internal motion can be directly visualized in radiation 
therapy and ultrasound (US) guided surgery. For radiation 
therapy, one or more metallic markers are optionally implanted 
inside or near the target, then their positions can be tracked in 
real-time with fluoroscopic imaging device [4]. Real Time 
Radiation Therapy [5] continuously detects and recognizes the 
internal target position. However, the obvious weakness of this 
method consists in the extra non-therapeutic dose patients 
received during the fluoroscopic acquisition. For ultrasound-
guided surgery, the poor quality but real-time ultrasound images 
are useful for doctors to track the tumor under respiration. 
However, it's challenging to navigate the surgery in 3D space 
with the 2D images. 

Also, external motion can be exploited as a surrogate of the 
internal motion, during either the 4DCT reconstruction [6] or the 
treatment delivered by means of tracking techniques. The 
displacement of the epigastric surface is commonly detected 
with the depth-based camera [7], respiration belt [8], and mostly 
infra-red devices [3, 9]. For example, the RPM system can 
monitor the respiration by locating a cube placed on the patient's 
abdomen [10]. However, for the purpose of capturing the 
movements as comprehensive as possible, multiple markers 
should be placed on the thorax and/or abdomen of the subject. 

 
FIGURE II. THE TRAINING SCENARIO: THE YELLOW, RED, GREEN 

AND BLUE DOTS REPRESENT MAGNETIC SENSORS, WHICH 
SHOULD BE DROWN IN THE FIELD DRAWN AS THE CIEL 

REGION. THE GRAY RECTANGLE INDICATES THE 
ULTRASOUND (US) PLANE, WHILE LIGHT GRAY OBJECT 

INDICATES US PROBE. 

It's necessary to correlate the external motion and the tumor 
position for real-time tumor localization based on external 
signals. Various prediction methods have been researched for 
the localization problem with intra-fractional variations. Linear 
predictive models [11, 12] are used for estimating the future 
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tumor position based on the linear accumulation of extern 
signals. In view of the nonlinear respiratory motion, Kalman 
Filter was adapted for introducing weak nonlinearity into 
predictive model [11, 13, 14, 15]. But, the heavy computation 
load and weak linearity limit their further application. Next, 
artificial neural network and its extended approaches have 
advanced the prediction performance greatly despite its time- 
consuming computation [16, 12, 17, 18, 19]. 

C. Challenges 

The ideal localization system for interventional ablation 
treatment should be equipped with following qualities: (a) The 
system should decrease the amount of non-therapeutic radiation 
dose on patient. (b) The developed method should provide 
similar accuracy in locating tumor with respect to the 
fluoroscopic methods. (c) This system should be able to acquire 
and process data with less computing time for real- time 
processing. (d) The system should be affordable for wide 
deployment and open to third-party integration. 

D. Contributions 

In this paper, we propose a real-time abdominal tumor 
localization system for intra-fraction variations based on the 
correlation between internal target and external marker status. 
The gradient boosting method is adapted for estimating the 
mutual information between external markers and internal tumor 
position. Moreover, we propose a new method for selection of 
the layout of the external surrogate signals based on the feature 
selection techniques. The electromagnetic positioning system is 
adapted instead of optical localization device, which leaves 
surgeon more freedom for operation without worrying about 
veiling light. The overall framework works as follows: First, 
acquire the tumor position by medical image analysis 
automatically. Commonly, the orthogonal X-ray images or 
ultrasound images are frequently used for specific scenarios. In 
this paper, we extract target position inside liver by analyzing 
ultrasound images. Then, train the correlation model with 
external signals as input features, and tumor position as labels. 
During treatment, this paper use GBM to output the tumor 
position, according to the simultaneous status of external 
markers. The experiment show that our system can reach a 
relatively high accuracy with less computing time. 

II. FORECASTING METHODOLOGY 

In this section, we first introduce the data collecting and 
processing, including label extraction and data quality control. 
Then, we provide a nonparametric formalization of our model. 
Next, we briefly review gradient boosting method and describe 
how stability selection can be incorporated to control for false 
positives, followed by the discussion of the properties of GBM 

A. Data Preprocessing 

In our system, we localize surface markers and surgical 
tools with electromagnetic localization system and its 
coordinate is treated as the world coordinate. The reasons why 
we use the magnetic based localization system are listed as 
follows: First, it is open to integrate third-party instruments like 
X-ray devices, ultrasound devices, CT devices, et cetera. 
Second, the system is robust to optical shield. Third, is 

affordable for wide deployment compared with fluoroscopic 
localization system. 

1) Label Extraction: Before surgery, the ultrasound images 
of ROI should be collected. Under the supervision of doctors, 
the target position can be extracted by the template matching, 
and then be recorded for later training. At the same time, the 
position and orientation of external points were also collected 
through electromagnetic localization system.  

2) Device Calibration: Usually, the obtained target position 
in image coordinate is not the exact answer needed. The con- 
version from image coordinate to world coordinate should be 
completed in practice. For example, we need to calibrate every 
pixel in image coordinate to electromagnetic coordinate 
depicted in FIGURE III. Both circles in rectangle A and B 
represent sensors stick to the ultrasound probe. The orientation 
of A is placed parallel to XEM axis when the XUS OUS YUS is 
parallel to the XEMYEMZEM, the OEMXEM is parallel to OUSXUS, 
and the AOUS is already known to us. Therefore, the target 
position ܲ in world coordinate could be represented as ܲ = ࢖ + ௎ௌܱܣ + ܱ௎ௌܲ = ࢖ + ௎ௌܱܣ + (ℎ, ,ݓ 0), (1)

where ࢖ is the sensor position in world coordinate, and (ℎ,	ݓ) 
is the target position in image coordinate. 

 

FIGURE IV. DIAGRAM OF CALIBRATING ULTRASONIC IMAGE.  THE 
XUSOUSYUS DENOTES THE 2D ULTRASOUND IMAGE COORDINATE, 
WHILE THE XEMYEMZEM DENOTES THE 3D WORLD COORDINATE. 

THE RECTANGLE A IS THE INITIAL POSE OF US PROBE, AND 
RECTANGLE B IS THE CURRENT POSE OF US PROBE. 

From electromagnetic field system, we can easily get the 
sensor position and quaternion [࢖,  where p is the position in ,[ࢗ
world coordinate and q is the quaternion. Assume the data of ܣ 
and ܤ are [࡭࢖, ,࡮࢖] and [࡭ࢗ  then we can address that ,[࡮ࢗ
When the sensor ܣ is moved, and rotated to the position of ܤ, then its corresponding ௡ܲ௘௪ could be 

௡ܲ௘௪ = ࡮ࢗ)ܯ − (࡭ࢗ ∙ ܲ + ࡮࢖) − (2) (࡭࢖

where ܯ(∙)  denotes the transform from quaternion to rotate 
matrix. Let ࢗ = ܽ + ࢏ܾ + ܿ࢐ + ݀࢑ , where ࢏ଶ = ࢐ଶ = ࢑ଶ =−1, ࢏ ∙ ࢐ = ࢑, ࢏ ∙ ࢑ = ࢐, ࢐ ∙ ࢑ =  then the rotation matrix can be ,࢏
formalized as 
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(ࢗ)ܯ = ቎1 − 2(ܿଶ + ݀ଶ) 2(ܾܿ − ݀ܽ) 2(ܾ݀ + ܿܽ)2(ܾܿ + ݀ܽ) 12(ܾଶ + ݀ଶ) 2ܾܿ݀ܽ2ܾ݀ܿܽ 2(ܿ݀ + ܾܽ) 12(ܽଶ + ܿଶ)቏ (3)

Accordingly, every pixel in ultrasonic images could be 
mapped into 3D coordinate through translation and rotation 
information between ܣ and ܤ. 

B. Formalization 

We use nonparametric additive models for forecasting the 
tumor position. These models have non-linear relationships. In 
particular, the proposed models allow nonlinear and parametric 
terms using the framework of additive models. The predicted 
position against certain feature values is modeled with ࢟ = (࢞)ܨ + (4) ࢋ

where ࢟	 = 	 ,ݔ] ,ݕ  denotes the position of the target tumor [ݖ
against the input features ࢞. The ࢞ is a ݀ dimensional vector 
containing all positions and orientations of the selected 
thoracic-abdominal surface points which are considered in the 
model. The ࢋ = [݁௫, ݁௬, ݁௭]  denotes the model error for the 
input ࢞. Our goal is to estimate the function ܨ:ℝௗ → ℝଷ for a 
given quadratic loss function. Therefore, the estimation of the 
function ܨ = ,{௧ܨ} ݐ  ∈ 	 ,ݔ} ,ݕ {ݖ  based on a sample dataset {࢞࢏, ௜ୀଵே{࢏࢟  reduces to minimizing 

෠ܨ = argminி 1ܰ ෍(࢟࢏ − ଶே((࢏࢞)ܨ
௜ୀଵ  (5)

C. Gradient Boosting Machine  

Boosting is an efficient supervised learning algorithm 
created with the idea of developing a strong learner by combing 
weak learners. Boosting methods have drawn lots of attention 
since it was proposed in 1990 [20, 21, 22], and keeps active in 
wide range of research fields and applications considering its 
excellent performance [23]. There is a popular believe that the 
ability of anti-overfitting is the key to interpreting its great 
performance and broad adaptability [24]. Gradient boosting 
estimates ܨ iteratively. We let  

(࢞)෠௠ܨ = (࢞)෠௠ିଵܨ + ,࢞)ℎ෠௠ߟ ෠(௠)), (6)ߠ

where ℎ෠௠(࢞) is the weak learner estimate at the ݉th stage with 
its parameters ߠ(௠) , and ߟ ∈ 	 [0,1]  is the decay coefficient. 
Since the estimation ܨ෠௠ିଵ(࢞) has been provided, we can first 
obtain the ℎ෠௠(࢞) by computing the steepest gradient ߤ௠ = ݕ ,௠ߤ} ෠௠ିଵ(࢞). Then, a regressor is feed withܨ− ࢞}௧ୀଵ்  with weak 
learner, shown as follows: 

෠(௠)ߠ = argminఏ 1ܰ ෍|ߤ௠ − ℎ෠௠(࢞, ෠)|ଶ்ߠ
௧ୀଵ  (7)

where ℎ෠௠(࢞)	݅ݏ	optimized to best predict the residuals with the 
previous model ܨ෠௠ିଵ(࢞). Finally, we can obtain the solution 

(࢞)ܨ = (࢞)෠(ெ)ܨ = ℎ෠଴(࢞) + ෍ ℎ෠௠(࢞)ெߟ
௠ୀଵ  (8)

and the estimation could be improved continuously by adding 
the complement part ߟℎ෠௠(࢞) at every new stage. We can also 
control the overfitting degree by limiting the value of ܯ. The 
two parameters ߟ and M are not independent to each other. The 
decrease of ߟ  could increase the value of ܯ . According to 
Friedman’s work [22], smaller ߟ  is better for controlling 
overfitting during boosting training. Here we set ν = 0.1. 
Therefore, the M is only parameter that needs to be optimized. 

III. EXPERIMENTS 

A. Devices 

As shown in FIGURE IV, there is an electromagnetic field 
generator placed inside the self-designed operation table. The 
operation table is not magnetic sensitive so that the 
electromagnetic field could pass through nondisruptively. The 
yellow rectangle shows the system control unit (SCU) that 
supports 8 ports, which means we can collect position and 
orientation of at most 8 points simultaneously. The Aurora 
Electromagnetic Tracking Systems is open to integrate third-
party developed tools. Therefore, it’s easier to work with the 
existing devices and surgical tools. Here, we integrate the third-
party ultrasound device into this system as shown in the green 
rectangle just by attaching a magnetic sensor and calibrating 
with necessary parameters as depicted in FIGURE III(a). As a 
consequence, the ultrasound images could be directly mapped 
into 3D magnetic coordinate.  

 
FIGURE VI. EXPERIMENTAL DEVICES: THE GREEN RECTANGLE 

SHOWS THE THIRD-PARTY US PROBE ATTACHED WITH A 
MAGNETIC SENSOR. THE RED RECTANGLE SHOWS THE 

ELECTROMAGNETIC FIELD GENERATOR EMBEDDED IN THE 
CUSTOMIZED SURGERY TABLE. ALL MAGNETIC SENSORS 

SHOULD BE CONNECTED TO SYSTEM CONTROL UNIT (8 PORTS) IN 
YELLOW RECTANGLE. 

B.  Data Collection and Calibration 

The real-time tumor positions are collected semi-
automatically. First, the surgeon marked the center of tumor 
region as seed point from the real-time medical image. Second, 
the tumor tracking algorithm tracking the seed point and record 
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its absolute position. Third, we calibrate pixels in 2D image 
coordinate system to a 3D position in the electromagnetic 
coordinate. As shown in Fig. V, the green cross marks a kidney 
point as the target instead of the tumor. The selected point 
always has a stable and clear edge in ultrasonic images. Here we 
use this point as a substitution of a tumor to validate the 
feasibility of our method. 

In FIGURE V, the doctor select a point on diaphragm as a 
seed point marked yellow. Then the nearby region is chosen as 
the template. The algorithm will find the best matching point 
nearby when every new frame comes. We highlight the 
diaphragm (the white part) so that we can see the spatial 
relationship between seed point and the diaphragm. FIGURE 
VII shows the absolute position of the selected fiducial point 
(instead of tumor) inner the subjective liver. This point has 
repetitive or quasi-repetitive motions on X-axis, Y-axis, and Z-
axis, meanwhile, these motions have different periodic phases.  

 
FIGURE V. TRACKING TARGET POINT IN US IMAGES SEQUENCE 

FOR ABOUT 1.1S BY TEMPLATE MATCHING. THE YELLOW POINT 
IS THE TARGET SELECTED BY THE DOCTOR. THE BLACK 

RECTANGLE INSIDE EVERY PICTURE INDICATES THE REGION OF 
INTEREST. 

Then, the doctor uses the ultrasonic device to track the target 
point. Meanwhile, the tracking algorithm will record the position 
of the target according to local similarity. The algorithm will find 
the best matching point in the nearby region when every new 
frame comes. The selected point inner kidney moves 
periodically due to the regular respiratory motion. The z-axial 
value always equals to zero because the pixel is in the 2D 
coordinate. Besides the position of the target, the probe's 
simultaneous position and orientation will also be recorded with 
the aid of electromagnetic sensor stuck to this ultrasonic probe. 
Then we can easily calibrate every pixel of ultrasonic images 
into the 3D electromagnetic coordinate according to FIGURE III. 
The corresponding target trajectory in world coordinate is shown 
in FIGURE VI. We can find the target point inner kidney moves 
mainly in superior-inferior direction, which is represented with 
Y-axis. This paper uses this 3D trajectory as the ground truth to 
train and validate prediction model. 

 
FIGURE VIII. THE REAL-TIME POSITION OF THE FIDUCIAL POINT 
INNER KIDNEY. THE BLUE, GREEN AND BLUE LINES INDICATES 
THE X-AXIAL, Y-AXIAL AND Z-AXIAL POSITION OF THE 3D EM 

COORDINATE RESPECTIVELY. 

C. Training and Validation Model 

In this experiment, there are 7 external sensors are clinging 
to patient’s thoracic-abdominal surface, where 7 parameters are 
provided for each single sensor. Therefore, we have 49 features 
in total to analyze the respiration motion. Considering the 
limited data that we collect, we use cross-validation as the 
benchmark to optimizing our model. Then, we use test dataset to 
evaluate the performance of prediction model. By this way, we 
not only find out the prediction precision, but also find out the 
precision changing trend with the time. As we can see in 
FIGURE IX, the prediction of our model according to the 
external surrogates matches the labels perfectly. The maximum 
estimation error is less than 1.9 mm since model trained within 
15 s. The longer interval from the model trained to the current 
frame is, the lower prediction precision we can get. So, we must 
update our model with new data frame for assuring the 
prediction performance. 

 
FIGURE VII. THE PREDICTIONS ERROR OF THE TARGET POSITION.  

IV. CONCLUSION 

In this paper, this study shows that gradient boosting could 
be a helpful tool to localize the inner target with external signals 
as input, meanwhile validating the feasibility of modeling the 
relation of internal and external signals. Moreover, the 
integration of GBM into an electromagnetic (EM) tracking 
system can bring about several advantages:  
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 GBM is an efficient supervised learning method. Its 
powerful anti-overfitting ability and rapid convergence could 
guarantee the great performance and robustness of this system. 

 EM tracking system can track multiple external points 
simultaneously, but not with the optical-based system. More 
external points could do help to get the big picture of external 
respiratory motion. 

 EM tracking system has more powerful anti-occluding 
ability than optical-based localization system. The surgeon no 
longer needs to pay attention to expose the positioning tool to 
the optical camera during operation. 

V. FUTURE WORK 

There are still some limitations in this work that should be 
reinforced in the future: (a) The number of tested subjects is not 
enough and more experiment should be added later; (b) The 
valid time for model tells surgeon the period of validity when the 
model is reliable. To ensure the surgery goes safely and 
smoothly, the valid time should be tested in the future; (c) There 
are more feature selection strategies can be tested for 
optimization of external markers layout. 
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