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Abstract—atrial fibrillation (AF) is one of the most common 
arrhythmia in clinical, which is the major cause of embolic events 
and stroke, resulting in an important morbidity and mortality. The 
mechanisms leading to AF are still under extensive research. In 
this study, we present a novel complex network approach to analysis 
the dynamics of the heart during the whole AF process (before the 
AF to end of the AF). Three canine models of acute AF were 
designed and the common parameters of the novel complex network 
were used to investigate the method. The results show that the novel 
complex network parameter can not only detect the AF, but also 
can estimate the vulnerability of   atrial fibrillation effectively. 
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I. INTRODUCTION  

Atrial fibrillation (AF) is one of the most common 
arrhythmia in clinical, which can not only affects the quality of 
life of patients, serious can cause stroke, heart failure and other 
malignant diseases. There are about 3 million patients with 
permanent atrial fibrillation in the United States, and about 8 
million patients in China [1][2][3]. Nevertheless, treatment of 
AF is a clinical challenge because the mechanisms of the AF 
are still not fully understood [4].Thus, the study of AF is very 
extensive. From the point of signal view, it can be divided into 
two major parts. One is AF detection and AF termination 
detection based on body surface electrocardiogram [5]. Another 
one is study on atrial fibrillation mechanism based on 
epicardium or endocardium mapping of electrical signals [6]. 
From the point of method, it can be divided into linear analysis 
method and nonlinear analysis method [7]. Previous studies 
have shown that nonlinear analysis methods are more suitable 
for the analysis of physiological systems, especially cardiac 
dynamic system [8]. 

Despite the AF has been received considerable research 
interest, rare attention has been paid to the AF prediction. In 
fact, the atrial electricity system may have changed during the 
transition between AF and normal sinus rhythm (NSR) [9]. It 
means that we can predict the vulnerability of AF with an 
appropriate method, and manage it timely. Thus, recently some 
attentions begin to pay to this point. Chen et al. proposed a 
phase synchronization method to study the vulnerability by 
analysis the sinus electrogram [10]. Zhang et al. analysis the 
epicardial signals correlation by Shannon Entropy [11]. Up to 
now, no effective method has been proposed and more 
researches about the atrial situation predict are needed. 

In order to characterize the behaviors underlying the atrial 
electrical dynamics, it is necessary to take into account the 
global synchronization of the whole heart. Thus in this study, 
we proposed a novel complex network to analysis the atrial 
synchronization. First, by giving a step-like acetylcholine dose 
and electrical stimulation, acute canine AF models are 
established. AF vulnerability controlled by the Ladder-type 
acetylcholine (Ach) concentrations. Then, the phase-difference 
complex network was proposed to characterize the 
synchronization of the electrodes.  

II. METHODS 

A. Experiments 

To evaluate the effective of our method, we select three 
healthy adult hybrids of AF are provided by the center of the 
animal experiment of Nanjing Gulou Hospital, China. Canine I 
and canine II are the male models with weight of 20 kg and 12 
kg respectively; Canine III is a female model with weight of 11 
kg. In experiment, the perfusion of acetylcholine is used to 
induce AF in anesthetized open-chest dogs with the electrical 
stimulation of left atrium appendage. Accordingly, epicardial 
mapping system [12] with 128 unipolar electrodes is used to 
record electrical activities of atrial epicardial surface. Eight 
pieces of flexible electrode(FIGURE I A) were sutured to the 
right ear, left atrial appendage, right atrium posterior wall, left 
atrial posterior wall and four pulmonary veins, and then 
connect to 128 ECG mapping system(FIGURE I B). 

     
(A)                                                     (B) 

FIGURE I. EPCARDIAL MAPPING SYSTEM: (A) FLEXIBLE 
ELECTRODE PLAQUE (B) SYSTEM EXPERIMENT BOX 

The reference electrode was sutured at the root of the aorta and 
connected to the reference electrode to the right ventricle. Two 
pairs of stimulating electrodes were sewn to the right atrial 
appendage and superior vena cava and right atrial junction, 
each pair of stimulating electrode distance of about 0.5 cm, and 
connect the program stimulator. Animal intravenous intubation 
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followed by micro-pump (2 g / L), for continuous intravenous 
injection of Ach (10 μg / kg / min). 3 minutes of sinus atrial 
electrical signals are recorded before the electrical stimulation. 
Then, 20 Hz Burst was given to each pair of electrodes for 5 s, 
with rapid stimulation of atrial fibrillation. The stimulation 
voltage was 2 times the pacing threshold, stimulated pulse 
width was 2 ms, and the stimulus was repeated 5 times. Record 
the number and time of AF. And then according to the situation 
and duration, gradually increase the dose. 3 minutes later, 
repeat the above records and stimulation process. When 5 times 
of atrial electrical stimulation can induce 5 times persistent AF 
(AF duration ≥  3 min), the maximum degree of AF is 
achieved and the maximum degree of AF is defined by Ach 
dose (different levels of potential atrial fibrillation). 

All recordings are digitized at 2000 Hz with 16-bit 
resolution. The least mean square adaptive filter is firstly used 
to remove the noise and ventricular artifacts. After the filtering, 
the sampling rate is decimated to 200 Hz and the mean value is 
subtracted from each electrode (FIGURE II).  
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FIGURE II. RECORDED SIGNAL(A TYPE MEANS MILD AF) 

B. Signal Analysis 

In order to eliminate the influence of ventricular signal on 
data analysis, we have adopted an adaptive filtering method 
based on the minimum mean square error criterion. And noise 
is removed from the collected epicardial electrical signals. 

In the last decade, the complex network becomes a popular 
method for the analysis of dynamical properties of real-world 
systems and widely applied to biological, climate networks and 
ecological community [13][14][15]. Among the algorithms of 
mapping time series into the complex networks, the recurrence 
complex network [16, 17] interprets the adjacency matrix 
directly from the recurrence concept in the phase space, which 
may provide a unifying conceptual and practical framework 
than others. But this method describes the relationship between 
the electrodes just according to the Euclidean distance in the 
considered phase space. In the fact, between Atrial electrical 
synchronization and vulnerability to AF exits a certain 
relationship [10]. Thus, considering those two merits, we 
proposed the phase-difference complex network as follows. 

 The phase space vector xi (t) is the i electrode of 
anterior right atrium in the time t. In order to achieve the 
balance between the network size and the cardiac cycle, each 
recorded signal is divided into segments whose duration is 2 
seconds (0 ≤ t ≤ N, N=400).  

 The instantaneous phase θi(t) is obtained by the Hilbert 
transform [18] of xi (t). The phase difference series φij( t ) for 
every two electrodes i and j can be calculated from θi( t ) 
andθj( t ) according to the formula (1): 

φij(t) =[(θi(t)−θj( t))(2π )−1] (1 ≤i, j ≤44, 1 ≤ t ≤ N )    (1) 

 In order to reduce the computation complexity. We 
transform φij( t ) to S(φij(t)) based on symbolic method. 

First, φij( t ) was normalized to [0,1].Then transformed it to 
M(here M = 5) symbols by: 

 S(φij( t ))=[0, 0 ≤φij( t ) < 0.2;1, 0.2 ≤φij( t )< 0.4; 2, 0.4 ≤ φj(t ) 
< 0.6 ; 3, 0.6≤ φj(t ) <0.8;4, 0.8≤ φj(t ) ≤ 1]，(1 ≤i, j ≤44, 1 ≤ t 

≤ N ).                                        (2) 

 To quantify the two electrodes synchronization, phase 
synchronization entropy (EPSI) ρij  is calculated [19] by: 

ρij =(SEmax-SE) /SEmax.                      (3) 

where, SEmax = lnM, SE is Shannon entropy of the symbols. The 
value of EPSIρij  can describe the degree of two electrodes and 
is normalized to [0,1].ρij  equal to 1means the i electrode is 
totally synchronized with the j electrode. Conversely,ρij  equal 
to 0 means the i electrode is nonsynchronous with the j 
electrode. 

 Finally, the phase difference complex network can 
construct based on EPSI with a threshold r (here, r = 0.3). Each 
electrode as one of the complex network node, then from the 
novel complex network, we can get the common complex 
network parameters [16]. Thus, the relationship between the 
vulnerability and the parameters can be discussed. 

III. RESULTS AND DISCUSSION 

In our study, through the Ach ladder-type concentrations 
injection and electrical stimulation, AF was observed from 20 
minutes to 60 minutes. The whole process signals (previous AF 
signals, AF signals and post AF signals) were recorded. FIGURE 
III shows the matrix of the complex network of the sinus signals 
before AF (previous AF). 

 
FIGURE III. THE COMPLEX NETWORK OF THE PREVIOUS AF(LEFT) 

AND WITH THRESHOLD (WRIGHT) 

FIGURE IV shows the matrix of the complex network of the 
AF. 
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FIGURE IV. THE COMPLEX NETWORK OF THE AF(LEFT) AND WITH 

THRESHOLD (WRIGHT) 

FIGURE V shows the complex matrix of the complex 
network of the sinus signals after AF (post AF). 

 
FIGURE V. THE COMPLEX NETWORK OF THE POST AF(LEFT) AND 

WITH THRESHOLD (WRIGHT) 

FIGURE III to FIGURE V shows the complex network 
matrix of the whole process of the AF. Before AF, the value of 
EPSI is bigger thus more dots appear in the figure. That means 
more electrodes are synchronized in Sinus rhythm. With the 
occurrence of AF, the epicardial signals began to messy. The 
points in the matrix become discrete. That means electrodes are 
less synchronized during AF. And when AF finished, the 
electrodes synchronization ability is recovery. This result can 
be supported by the physiological phenomenon. The 
development of AF is the process of atrial electrical activity 
from the orderly electrical activity gradually evolved into 
chaotic withered waves and hence their electrical activity 
became nonsynchronous.  

For every stage of the signal (100 samples for every stage), 
the statistics of the recurrence rate (REC), line distribution 
Shannon entropy (ENTR) and the determination of the 
structure (DET) are shown in TABLE I. From the table, we can 
see that the values of the AF are different with other two stages 
obviously. Thus, this novel complex network could be used to 
detect AF and to predict the AF determination.  

TABLE I.  THE PARAMETERS OF NOVEL COMPLEX NETWORK  

param
eters 

Different stages 

Pre-AF AF Post-AF 

REC 0.5619±0.1415 0.2547±0.1827 0.5112±0.1775

ENTR 0.5112±0.1775 0.3652±0.2086 0.4111±0.1579

DET 0.8757±0.0828 0.7544±0.1826 0.8463±0.1233

The vulnerability of the atrial is also discussed in this study. 
The FIGURE VI shows the recurrence rate of the phase 
difference complex network in different Ach concentrations.  
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FIGURE VI. THE REC WITH DIFFERENT ACH CONCENTRATIONS 

During the experiment, the state of the atrial is stable at the 
beginning. We cannot induce the AF when Ach concentration 
is less than 50 μg/kg/min. After that, as the Ach concentration 
increases, we can induce AF easily. There is a good consistent 
between the parameter and the experiment results, as shown in 
FIGURE VI. With the increase of the vulnerability of the atrial, 
the value of the REC declined. The synchronization between 
the electrodes becomes poor. 

It is worth mentioning that recurrence rate of the novel 
complex network is obtained from the Sinus signals. That 
means we can predict the atrial situation and then realize the 
AF prediction. 

IV. CONCLUSION 

Assuming that the normal human atrium is working 
synchronization controlled by the sinus node. When the AF 
occurs, this synchronization will appear to varying degrees of 
decline, leading to changes in the complexity of atrial electrical 
activity.  

In this study, we innovate to use the EPSI depicts the 
electrodes synchronization. The synchronization of atrial 
electrical activity decreased with the number and duration of 
AF occurs. Combined with the advantage of the complex 
network for structure information, we build the complex 
network based on the EPSI. Our results show that there is a 
consistent trend between AF (duration of atrial fibrillation) and 
the REC of the novel complex network. Thus, the parameters 
of the EPSE complex network not only can detect AF and 
predict AF termination, but also can reflect the disorder of the 
atrial electrical activity effectively, and it associated with the 
vulnerability to AF.  
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