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Abstract—Unconstrained face verification has been actively 
studied for decades in computer vision. Recent algorithms rely on 
Convolution Neural Network to further improve the accuracy. 
However, such algorithms tend to be time-consuming and 
computationally complex, which cannot meet the real-time 
requirements. In this paper, we propose an efficient and accurate 
face verification method based on Convolution Neural Network 
Cascade architecture. First, we use a compact network to handle 
most of the simple samples. Then, we use a complex network to 
handle a small number of hard samples. Finally, we use an 
ensemble of multi-patch networks with metric learning. Our 
method achieves an accuracy of 99.72% on LFW, which 
performs favorably against the state-of-the-arts. Furthermore, we 
significantly reduce time cost from 485ms to only 20ms on a 
single core i7-4790, which has strong practical value for real-time 
face verification systems. 
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I. INTRODUCTION 

In recent years, Convolution neural networks (CNNs) have 
achieved great success in computer vision, especially on face 
verification problem. The goal of face verification is to verify 
whether two given faces belong to the same person, which is 
very important for public security nowadays. Results on public 
datasets (e.g., LFW) keep climbing as more deep CNN based 
methods are introduced.  

Learning invariant and discriminative feature representation 
is the first step for a face verification system using CNNs. 
Advances in deep learning methods have shown that compact 
and discriminative representation can be learned by using deep 
CNNs from very large datasets [14, 17, 18]. Taigman et al. [1] 
train CNN by 4.4M face images as a feature extractor for face 
verification tasks for the first time. It employs a 3D alignment 
method for data pre-processing and obtains an accuracy of 
97.35% on LFW with 4096D feature vectors. Sun et al. [2] 
achieve an accuracy that surpass human performance for face 
verification on the LFW dataset using an ensemble of 25 
simple Deep CNNs trained on weakly aligned face images. Sun 
et al. [19] adopt in joint identification-verification supervision 
signal which leads to more discriminative features. Schroff et 
al. [5] adapt the state-of-the-art deep architecture from object 
recognition to face recognition and train it on a large-scale 
unaligned private face dataset with a triplet loss. These work 

essentially demonstrates the effectiveness of the deep CNN 
model for feature learning. 

Learning a similarity measure from data is another key 
component that can boost the performance of a face 
verification system. Many approaches have been proposed in 
the literature that essentially exploit the label information from 
face images or face pairs. For instance, Hu et al. [11] learn a 
discriminative metric within the deep neural network 
framework. Weinberger et al. [9] propose Large Margin 
Nearest Neighbor (LMNN) metric which enforces the large 
margin constraint among all triplets of labeled training data. 
Huang et al. [12] learn a projection metric over a set of labeled 
images which preserves the underlying manifold structure. 
Chen et al. [10] propose a joint Bayesian approach for face 
verification which models the joint distribution of a pair of face 
images instead of the difference between them, and the ratio of 
between class and within-class probabilities is used as the 
similarity measure. In our approach Joint Bayesian Metric 
Learning method is used. 

As the network goes deeper and wider for addressing 
variations in pose, illumination, expression, age, cosmetics, and 
occlusion, the algorithms tend to be time-consuming and 
computationally complex. However, in most cases, faces can 
easily be distinguished by a shallower network. 

In this paper, we propose a CNN cascade architecture, 
which contains three stages. The first stage is a simple network 
with relatively less powerful discriminating ability. The second 
stage comes with a network which is deeper and wider, and 
verification ability is relatively stronger. At the last stage, a 
multi-patch ensemble method is used, it has the best 
verification ability, but at the same time, needs more than 12 
times the computational complexity compared to the network 
used in the first stage.  

In our cascade architecture, feature extracted in the former 
stage will also be used in the later stages. With the advantage of 
using multiple patches and CNNs, we achieve competitive 
performance with the state-of-the-art methods. We traine our 
model with our own dataset called CvFaceDb, and evaluate the 
performance of the proposed method on the LFW dataset and 
YouTube Faces dataset (YTF). The CvFaceDb dataset contains 
6,725,683 images with 110,438 identities and has no 
intersection with LFW or YTF. 

The contributions of this paper are summarized as follows: 
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 A CNN cascade architecture is proposed for face 
verification, which works both accurately and efficiently. 

 A lightened convolutional neural network named 
MFM-FaceNet and a residual convolution network called RES-
FaceNet are designed for extracting the features of faces. The 
first network is simple with high speed of feature extraction, 
about 5ms on a single core i7-4790, while the second one 
archives an accuracy of 99.22% with a single model on the 
LFW dataset. 

 The proposed framework obtains an accuracy of 
99.72% on LFW and 93.10% on YTF, at the same time, costs 
only 20ms on a single core i7-4790 CPU per face image. 

The rest of the paper is organized as follows. Details of the 
CNN cascade architecture is given in Section 2. Experimental 
results are presented in Section 3. Finally, we conclude the 
paper in Section 4 with a brief summary. 

II. THE PROPOSED APPROACH 

A common pipeline of CNN based face verification 
methods consists of two steps. First a deep CNN is used to 
extract a feature vector with relatively high dimension and the 
network can be supervised by multiclass and verification losses. 
Then, PCA, Joint Bayesian or metric learning methods are used 
to learn a more efficient low dimensional representation. In 
order to further improve face verification performance, multi-
patch ensemble or fusion of multiple CNN models are often 
used. 

In contrast, there are three stages in our cascade approach, 
and every stage can be viewed as a common face verification 
method. In the training phase, we first perform face detection 
and alignment on the CvFaceDb dataset to localize and align 
each face. We randomly choose 90% (99,394) people from 
CvFaceDb, train every deep CNN on the aligned faces (or 
cropped patches), and derive the Joint Bayesian metrics with 
the remaining 10% people, one by one. The overall pipeline of 
our method is shown in Figure 1.  

 

FIGURE I.  OVERVIEW OF CNN CASCADE STRUCTURE FOR FACE VERIFICATION. JOINT BAYESIAN METRIC LEARNING USE FEATURES 
EXTRACTED FROM BOTH CURRENT STAGE AND THE FORMER STAGES. THR1 AND THR2 ARE PARAMETERS LEARNED BY 

EXPERIMENTS. 

In testing phase, given a pair of test faces, we first extract 
their features with MFM-FaceNet (network used in the first 
stage), fea1 and fea2. Then Joint Bayesian Metric Learning is 
applied to evaluate the distance between the two given faces, 
ML(fea1, fea2). A threshold thr1 decides whether the face pair 
needs to be verified further. The sketch is shown in Figure 2. 



 
 

1, 2 1,      different person

1, 2 1,    same person

,                               need further evaluate

ML fea fea thr

ML fea fea thr

others




 



   

FIGURE II.  A THRESHOLD NEED TO BE SET TO DECIDE WHERE 
THE FACE PAIR NEEDS TO BE EVALUATED FURTHER. 
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thr1 affects both accuracy and time cost of the whole 
cascade structure. While small thr1 will lead to high speed, it 
will result in more incorrect labels at the same time. On the 
contrary, large thr1 will lead to more further evaluations of test 
pairs, and more time will be cost. thr1 needs to be learned by 
experiments. 

At the second stage, a network relatively more complicated 
with more powerful verification ability, called RES-FaceNet, is 
used. After extracting features of the given face pair, we 
concatenate them with the corresponding features extracted 
from the first stage, and use Joint Bayesian Metric Learning to 
estimate the distance between the test pair with the assembled 
features. Another threshold thr2 is set to decide whether the 
pair needs to be verified by the next stage. 

At the last stage, a multi-patch ensemble method is used. 
An input image is cropped to 8 patches according to the 
detected landmarks, and we extract features of every patch. The 
final representation of a face is a concatenation of the 8 
patches’ features as well as the features extracted from the 
former stages. We also perform Joint Bayesian Metric Learning 
to make the final decision. 

The details of each component of our approach are 
presented in the following subsections. 

A. Data Preprocessing 

Before training the CNNs, we perform face detection and 
landmark detection on the CvFaceDb dataset. Then, we align 
each face into the canonical coordinate with similarity 
transformation using the landmark points. After alignment, face 
images are normalized to 125 160 pixels in RGB, shown in 
Figure 3.  

    
FIGURE III.  EXAMPLES OF ALIGNED FACES IN CVFACEDB. 

B. Deep Face Feature Representation 

As mentioned above, our cascade approach contains three 
stages. Three sets of CNN models are trained with aligned 
faces.  

At the first stage, a carefully designed network called 
MFM-FaceNet is used. The network contains 9 convolution 
layers, 4 max-pooling layers and 2 fully connected layers 
(including softmax). Max-Feature-Map (MFM) [13] activation 
function is used. MFM in convolution layers is a variation of 
the maxout operator, which is proved to be helpful in feature 
learning.  

A Residual Network [20] is used in the second stage, called 
RES-FaceNet. The deep network is constructed by 26 
convolution layers, 5 max-pooling layers, and 2 fully connected 
layers (including softmax). Cross-layer info transmission is 
added between some layers for better feature learning and 
faster training of the network. Instead of using a commonly 

used activation ReLU in RES-FaceNet, we use PReLU [21] 
instead. As is known, the motivation of ReLU in the negative 
part is zero, which may loss much information. The method of 
PReLU adaptively learns the parameters jointly with the whole 
model. It introduces a very small number of extra parameters 
and negligible risk of overfitting. Experiments in [21] indicate 
that the learned coefficients of first convolution layer are 
significantly greater than 0, while the deeper convolution layers 
generally have smaller coefficients. This implies that the 
PReLU model tends to keep more information in earlier stages 
and becomes more discriminative in deeper stages where the 
activations become “more nonlinear” at the meantime. Figure 4 
shows the comparison between ReLU and PReLU. 

f(y)

f(y)=y

y

f(y)

f(y)=y

f(y)=ay

ReLU PReLU
 

FIGURE IV.  RELU VS. PRELU. FOR PRELU, THE COEFFICIENT OF 
THE NEGATIVE PART IS NOT CONSTANT AND IS 

ADAPTIVELY LEARNED. 

The last stage uses the same network structure as in the 
second stage, but with multi-patch ensemble, we cropped 20 
patches from a face according to the detected landmarks, and 
trained 20 CNN models separately. Finally, 8 patches are 
selected according to their performance. A set of examples is 
listed in Figure 5. 

 

FIGURE V.  PATCHES USED IN OUR METHOD. 

The architectures of MFM-FaceNet and RES-FaceNet are 
shown in Figure 6. 

C. Joint Bayesian Metric Learning 

In order to acquire better verification accuracy, we learn 
joint Bayesian metrics which have achieved good performance 
on face verification problems. Instead of modeling the 
difference between two faces using 2L  distance, this approach 
directly models the joint distribution of features of both thi  
and thj  images { , }i jx x  as a Gaussian distribution. Let  

( , | ) (0, )i j I IP x x H N   when ix  and jx  belong to the same 

class, and ( , | ) (0, )i j E EP x x H N   when they are from 

different classes. In addition, each face vector can be 
represented by x    , where   stands for the identity and 
  is the face variation (e.g., lightings, pose, and expressions) 
within the same identity. The latent variable   and   are 

assumed to follow two Gaussian distributions (0, )N S  and 

(0, )N S . 
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FIGURE VI.  ILLUSTRATION OF THE ARCHITECTURE OF MFM-FACENET AND RES-FACENET. 

The log likelihood ratio of intra- and inter-classes, ( , )i jr x x  

can be computed as follows, 


( , | )

( , ) log 2
( , | )

i j I T T T
i j i i j j i j

i j E

P x x H
r x x x Ax x Ax x Gx

P x x H
    

where A  and G  are both negative semi-definite matrices.  

(2) can be written as 

 ( ) ( ) 2 ,   where T T
i j i j i jx x A x x x Bx B G A      

Instead of using the EM algorithm to estimate S  and S , 

we optimize the distance in a large-margin framework as 
follows, 


,

, ,
arg min max[1 ( ( ) ( )

2 ),0]

T
ij i j i ji j

A B b

T
i j

y b x x A x x

x Bx

   




 

where b  is the threshold, and ijy  is the label of a pair,  

1ijy   if person i  and j  are the same, otherwise 1ijy   . For 

simplicity, we denote ( ) ( ) 2T T
i j i j i jx x A x x x Bx    by 

, ( , )A B i jd x x , A  and B  are updated using stochastic gradient 

descent as follows and are equally trained on positive and 
negative pairs in turn: 



,

1

,

1

1

,                       ( ( , )) 1

,        

,                       ( ( , )) 1

2 ,   

,                       

t ij t A B i j

t

t ij ij

t ij t A B i j

t T

t ij i j

t

t

A if y b d x x
A

A y otherwise

B if y b d x x
B

B y x x otherwise

b if
b











 


 

 













,
  ( ( , )) 1

,             

ij t A B i j

t b ij

y b d x x

b y otherwise

 







 

where ( )( )T
ij i j i jx x x x   , and   is the learning rate for 

A  and B , and b  for the bias b . We use random semi-

definite matrices to initialize A  and B , with TA WW  and 
TB VV , where W , d dV  , , ~ (0,1)ij ijw v N . 
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III. EXPERIMENTS AND RESULTS 

Evaluations are performed on existing benchmark datasets 
for a direct comparison to previous work. 

 LFW dataset contains 13,233 images with 5,749 
identities, and it is a standard benchmark for automatic face 
verification. We follow the standard evaluation protocol 
defined for the “unrestricted with labeled outside data” using 
data external to LFW for training, test on 6,000 face pairs and 
report the experiment results in Table 2. 

 YTF dataset consists of 3,425 videos of 1,595 
different people, with an average of 2.15 videos per person. 
The clip durations vary from 48 frames to 6,070 frames, with 
an average length of 181.3 frames. Also, we follow the 
“unrestricted with labeled outside data” protocol and report the 
result on 5,000 video pairs in Table 3. 

A. Accuracy on LFW of every CNN model 

A total of 9 CNNs are trained in our cascade framework. 
We test every model on LFW, and the results are shown in 
Table 1. 

TABLE I.  VERIFICATION RESULTS ON LFW, AND CPU TIME COST 
BY EVERY METHOD. 

Exp.
id 

Methods Patches 
Accuracy 

(avg) 
Time 

Cost(ms)

1 MFM-FaceNet 0 97.28% 5 

2 

RES-FaceNet 

0 99.22% 60 

3 1 99.10% 60 

4 2 99.05% 60 

5 3 98.57% 60 

6 4 98.75% 60 

7 5 98.08% 60 

8 6 98.26% 60 

9 7 98.55% 60 

10 
RES-FaceNet 
patch0+ML 

0 99.34% 60 

11 
RES-FaceNet multi-

patch+ML 
0-7 99.71% 480 

12 
Stage 1: MFM-FaceNet 

patch0+ML 
0 98.28% 5 

13 

Stage 2: Ensemble of 
MFM-FaceNet patch0 

and RES-FaceNet patch0 
with ML 

- 99.32% 65 

14 

Stage 3: Ensemble of 
MFM-FaceNet patch0 

and RES-FaceNet multi-
patch with ML 

- 99.72% 485 

From the table, we can conclude that:  

Effect of different network structures, MFM-FaceNet 
and RES-FaceNet are trained with the same data, but the later 
gets an accuracy of 99.22%, reducing the error rate 
significantly by 71.32% when compared with the former. It 
shows the strong learning ability of the CNNs, and deeper 

networks can learn more discriminative features. Meanwhile, 
the later takes 12 times CPU time than the former network.  

Effect of Joint Bayesian Metric Learning, by comparing 
Exp.1 with Exp.12 or Exp.2 with Exp.10, we can find that Joint 
Bayesian Metric Learning can further improve the accuracy in 
compare with Euclidean distance, as mentioned above.  

Effect of multi-patch and multi-CNN ensemble, also 
multi-patches ensemble and multi-CNNs ensemble improves 
the final accuracy, when comparing Exp.11 with Exp.10 and 
Exp.14 with Exp.11. 

B. Experiments on the Parameter thr1 and thr2 

Parameters thr1 and thr2 affect not only verification 
accuracy of our approach, but also affect time cost of a given 
test pair. The following experiments are performed to 
determine the parameters. 

The face verification accuracy and percent of pairs handled 
by the first and the second stage along with thr1 and thr2 
changes from 0 to 0.35 are shown in Figure 7. 

 
(a) 

 

(b) 

FIGURE VII.  FACE VERIFICATION ACCURACY AND PERCENT OF 
PAIRS HANDLED BY SPECIFIC STAGE WITH DIFFERENT 

THRESHOLD. 

As shown in Figure 7, the proper thr1 is around 0.15, when 
only 25% of the pairs beyond the verification ability of the first 
stage, and have no effect on the final verification accuracy. 
And the best value of thr2 is around 0.1, when 93% of the test 
pairs can be handled by the second stage. 

Thus, the average time consuming of a given face is about 
20.3ms. 

C. Final Result on LFW and YTF 
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TABLE II.  COMPARISONS WITH STATE-OF-THE-ART METHODS ON 
LFW 

Methods #Net 
Accuracy

(avg) 
Protocol 

Time Cost
(ms) 

DeepFace[8] 7 97.35% unrestricted - 

DeepID2[19] 25 98.97% unrestricted - 

WebFace 1 97.73% unsupervised 29 

FaceNet(NN1)[5]  99.63% unsupervised 49 

Face++[16]  99.50% unsupervised - 

VGG[6] 1 97.27% unsupervised 414 

Ours 9 99.72% unsupervised 20.3 

 
As described in Table 2, our cascade framework achieves 

99.72% verification accuracy on the LFW dataset, which is 
among the best published results under this protocol. At the 
same time, out approach costs only 20.3ms on a single core i7-
4790, which is much less time cost than others. 

The ROC curves on LFW are listed in Figure 8. 
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FIGURE VIII.  COMPARISONS WITH THE STATE-OF-THE-ART 
METHODS ON LFW IN TERMS OF ROC CURVES 

Figures 9 shows some failed cases on LFW pairwise 
verification task. From these examples, we can conclude that 
expression change, occlusion, illumination change are still 
important factors affecting the accuracy of face recognition. 

    
(a) False negative samples 

   
(b) False accept samples 

FIGURE IX.  FAILED CASES IN THE TASK ON LFW PAIR-WISE 
VERIFICATION TASK.  

We also test our method on the YTF dataset and the result 
is shown in Table 3. Due to low resolution and motion blur, the 

quality of images in the YTF dataset is worse than LFW. We 
randomly select 50 samples from each video and compute the 
average distances. As shown in Table 3, we obtain an accuracy 
of 93.10% on YTF. 

TABLE III.  COMPARISONS WITH STATE-OF-THE-ART METHODS ON 
YTF 

Methods #Net
Accuracy 

(avg) 
Protocol 

Time Cost
(ms) 

DeepFace[8] 1 91.40% supervised - 

WebFace 1 90.60% unsupervised 29 

VGG[6] 1 91.60% unsupervised 414 

Ours 1 93.10% unsupervised 20.3 

IV. CONCLUSION 

In this paper, we develop a cascade framework to perform 
efficient and accurate face verification, which contains three 
stages. The first stage of our framework is a simple network, 
which extracts features of faces very fast. In the second stage, a 
deeper and wider network named RES-FaceNet is used, it is 
more computing complex and time consuming, but with 
relatively higher verification accuracy. In the last stage, a 
multi-patch ensemble model is used, which has the best 
verification ability. Network in the first stage handle most of 
the easy examples and hard ones pass through to the following 
stages, the third stage comes with the final verification result. 
Our method achieves an accuracy of 99.72% on LFW while 
using a short time of 20.3ms on a single core i7-4790 on 
average, which has practical value for real-time face 
recognition systems.  

In our current implementation, deep CNNs are trained 
separately for every patch in the 3rd stage, making the time-
consuming linear growth with the patch number. If we train a 
multi-branch CNN, every patch shares the same feature-maps 
in lower stages and ROI-Pooling layers are used to pool out the 
correspondent feature-map, followed by patch-independent 
layers and Softmax layers. This can significantly reduce time 
costs and could be an interesting direction to be explored in the 
future. 
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