
Factory Test Management System Based on
Embedded Microprocessor

Li Tang
Department of Information Science and Technology

Tianjin University of Finance and Economics
Tianjin, China

tangli0831@tjufe.edu.cn

 Baosheng Wang
Department of Information Science and Technology

Tianjin University of Finance and Economics
Tianjin, China

905494664@qq.com

Li He
Department of Information Science and Technology

Tianjin University of Finance and Economics
Tianjin, China

renkeheli@163.com

 Shuhua ZHANG
Coordinated Innovation Center for Computable Modeling in

Management Science
Tianjin University of Finance and Economics

Tianjin, China
shuhua55@126.com

Abstract—The factory test management system is introduced
to reduce the failure rate of intelligent instrument. This paper
analyzes the structure of foreign factory test management system.
Based on it, this paper introduces the system architecture, testing
processes, communications protocols and the software realization
of the new factory test management system developed
independently, and especially focuses on the design of embedded
GUI (MiniGUI) and Linux device drivers. Compared with the
foreign factory test system, this factory test management system
with 32-bit microprocessor has the advantage of low-cost, small
size and strong flexibility.

Keywords—factory test management system; embedded
microprocessor; intelligent instrument; Linux device driver

I. INTRODUCTION
Instrument is the core component of industrial control

system. With the development of computer technology, more
and more embedded systems are applied to the field of
intelligent instrument. However, intelligent instruments also
have their shortcomings. There is a high failure rate and rework
rate. This undoubtedly adds to the cost of the business. To
solve this problem, the concept of factory testing is introduced,
and based on it, the factory test management system is
generated.

The factory testing infers to the testing within the product
assembly and packaging period, testing each component
functions of products, to check whether they work well or not.
This requires a special system that includes specific programs
running in the product, and some detection devices. Factory
testing management system in China is almost rare, and in
some large multinational enterprises is widely used, such as
SIEMENS (Germany), GE and Honeywell (USA). Some
foreign factory test systems are expensive and versatile, and
some functions are not practical for Chinese users. Therefore,
it is necessary to develop a factory test management system

with Chinese characteristics.

II. SYSTEM INTRODUCTION

A. Foreign Factory Test System Structure
The foreign factory testing system includes the control end

and the test end. The control end is PC, and the test end is
composed of test fixture and test bench. The control end sends
the factory test command to the test end through the RS-232,
and receives the data replied by the test end.

The foreign factory test system is listed in Fig. 1.

Fig. 1. Foreign factory test system.

B. A Brief Introduction to the Structure and Function of the
New Factory Test Management System
The control end sends the command to the test end through

the serial port and tells the test end to do the corresponding
operation. At the same time, it receives the information
returned by the test end through the serial port. The
development platform of control end is ARM9+Linux.

The test end includes test fixture and test bench. The test
fixture is used for placing the product, and the chassis has a

This research is supported by the Tianjin Natural Science Foundation of
China (15JCYBJC16000) and Tianjin innovative training program for college
students (201610070023).

Control End

Test
Fixture

Test End

Test Bench
Work
Bench

91
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Copyright © 2017, the Authors. Published by Atlantis Press.

Advances in Economics, Business and Management Research (AEBMR), volume 23
2017 2nd International Conference on Politics, Economics and Law (ICPEL 2017)

mailto:renkeheli@163.com

thimble connected with each test point of the product. The test
bench mainly has the following functions:

• Supply power to test the product.

• Provide up to 20 LED lights to simulate the I/O output
of real products.

• Provide A/D sampling thermistor.

• Provide the pneumatic devices to simulate the press
button.

• Provide frequency meter to check internal RC
calibration result.

The new factory test management system is listed in Fig. 2.

Fig. 2. The new factory test management system.

Compared with the foreign factory test system, the new
factory test management system has the lower cost because it
reduces some expensive function like man-machine interface
image recognition system and replaces PC with the 32 bit
embedded microprocessor in the control end. It is directly
embedded into the test bench, greatly reducing the size. The
embedded Linux operating system and the embedded graphical
user interface MiniGUI make the control end software almost
has the same friendly user interface and functions as the
foreign factory test system software. It is developed by
VB.NET.

III. TEST FLOW OF FACTORY TEST MANAGEMENT SYSTEM
The main processes of factory test management system are

shown as the following:

• Power on the test end.

• Check the A/D sampling module of the product. The
input of the A/D is provided by the thermistor of the
test bench.

• Check product LED. Test products, all LED digital
tubes are all turned on, they are turned off after five
seconds. This process is manually detected.

• Check product BUTTON. The input of the human
finger is simulated by the pneumatic device of the test
bench.

• Check the I/O module of the product. The status of
each I/O is shown by the light of the tester.

• Check product internal RC calibration result. The
output frequency of the CLKOUT pin of the product is
detected by the frequency meter of the tester, and the
result is the basis of whether the internal RC
calibration is accurate.

• Finish the factory test.

IV. COMMUNICATION PROTOCOL FOR FACTORY TEST
MANAGEMENT SYSTEM

A. Protocol Format Table of Factory Test

TABLE I. PROTOCOL FORMAT TABLE OF FACTORY TEST

START BYTE LENGTH DATA CRC8
0XE9 1 BYTE N BYTES 1 BYTE

B. Communication Command Table of Control End and Test
End

TABLE II. COMMUNICATION COMMAND TABLE OF CONTROL END AND
TEST END

Control End
Command

DATA Test End Command DATA

START 0X00 A/D TEST RESULT 0X80 + 4
BYTE

TEST LED 0X01 TEST LED END 0X81

TEST BUTTON 0X02 TEST BUTTON END 0X82

TEST I/O 0X03 TEST I/O END 0X83

TEST RC 0X04 TEST RC END 0X84

END 0X05

V. SOFTWARE IMPLEMENTATION OF FACTORY TEST
MANAGEMENT SYSTEM

A. Software Implementation of Control End
The software of control end is implemented by C and

embedded MiniGUI which are based on embedded Linux[1-2].

1) Embedded Linux Customization and Migration
The design of embedded Linux includes the customization

and migration of Linux kernel[3]. The main purpose is to
remove the all the useless modules, reduce the size of the
Linux as much as possible. The purpose of Linux migration is
to make Linux run on the ARM platform, which requires the
arm-linux-gcc cross compiler. Add the content in the path of
the Makefile:

CROSS_COMPILE=/usr/local/arm/2.95.3/bin/arm-Linux-
gcc.

Then, run “Make Menuconfig” command to graphically
configure the kernel menu option, customize, save and exit,
run “Make dep”, “Make Clean”, “Make zImage”, and generate
the Linux kernel image file that can run on ARM.

Test
Fixture

Control End

Test Bench

92

Advances in Economics, Business and Management Research (AEBMR), volume 23

2) Development of Linux device drivers
In this project, the hardware needs to be operated. In Linux,

hardware operations are implemented by device drivers. In the
Linux operating system, the driver is the direct interface
between the operating system kernel and the hardware device,
and the driver shields the detail information of the hardware
(such as bus protocol, DMA operation, etc.). From the view of
application layer, the hardware device is just a device file, and
the application can operate the hardware device just like an
ordinary file. Device drivers are part of the kernel[4].

In this project, the embedded microprocessor sends the
factory test command to the test end, and receives the data
transmitted from the test port through the USART port, so it is
necessary to design a USART Linux device driver. Because the
user processes are handled hardware through device files, the
manner of operating to the device files is called system calls
such as open, read, write, close, and so on. But if associate
system calls with drivers, it is necessary to use a very critical
data structure:

static struct file_operations usart_fops = {
 read: usart_read,

 write: usart_write,
 ioctl: usart_ioctl,
 open: usart_open,

 releas: usart_close,
}

The device driver is loaded in the form of module to the
kernel dynamically, each loading process will call init_module
automatically. This function applies a major device number
from the operation system, and creates a device file in the
default directory. The cleanup_module will be called once the
module is un-installed, and this function will cancel the major
device number, and delete the device file in the default
directory. By using the “open” function in the application to
open the device file, it then uses the “IOCTL” function to set
the communication mode of USART. Finally, it uses “read”
and “write” function to read and write from/to the devices.

3) Design of embedded MiniGUI
MiniGUI is a graphical user interface support system, and

all the general GUI programming concepts can be applied to
MiniGUI programming, such as windows and event driven
programming, etc. [5-6].

This project requires MiniGUI to run on the ARM platform,
so MiniGUI should be configured for it. Configuration method
is to enter the directory of the source code /libminigui, and
execute the “make menuconfig” command to configure:

• Compiler:arm-Linux-gcc;

• Path prefix:/usr/local/arm/2.95.3/arm-Linux;

• GAL engine option: choose “NewGAL engine on
Linux FrameBuffer console”;

• IAL engine option: choose “Ipaq h3600(also H3800)”;

• Font options: choose “QT Prerendered Font”, don’t
choose “Var bitmap font”;

• After configuration is finished, modify
SRC/mybmp/Makefile, add source code shown as
below:

INCLUDES=-I/opt/host/armv4l/armv4l-redhat-
Linux/include;

LDFLAGS=-L/opt/host/armv4l/armv4l-redhat-
Linux/lib;

• And then execute “Make” to compile; finally execute
“Make install”.

The user interface designed by MiniGUI is shown as Fig.3.

Fig. 3. The user interface designed by MiniGUI.

B. The Software Implementation of Test End
The test end software is running on the product and it is

different from the software designed for the customer. The core
of the software is a state machine function:

void FactoryTestMachineState(STATE_TYPE status)
{

switch (status)
{

case Test_AD_Status:
// Do AD verification

break;
case Test_LED_Status:

// Turn on LED step by step
 break;

 ……
}

}
After factory test is finished and the product works well,

the final customer software will be programmed into the
product.

VI. CONCLUSION
From the test result, the new factory test management

system can reduce the failure rate and rework rate apparently,
and save a lot of cost for the enterprise management.
Comparing with foreign factory test system, the new factory
test management system has the advantages such as lower cost,
smaller size and so on. 32-bit embedded system makes the

93

Advances in Economics, Business and Management Research (AEBMR), volume 23

whole factory test management system with higher
extendibility, and makes it easy to be upgraded in the future. So
in the field of control instruments management, it is important
both in theoretical and practical application.

ACKNOWLEDGMENT
The research is supported by the Tianjin Natural Science

Foundation of China (15JCYBJC16000) and Tianjin
innovative training program for college students
(201610070023).

REFERENCES
[1] Y. Tang, Real Time Operating System Application Development Guide,

Beijing: China Electric Power Press, 2002, pp. 13-25. (In Chinese)
[2] H.X. Jiang, “Programming C on ARM Embedded Platform,” Computer

Applications and Software, vol. 20, pp. 15-17, 2003. (In Chinese)
[3] C. L. Du, ARM Architecture Stuction and Programme, 2rd ed., Beijing:

Tsinghua University Press, 2015, pp. 384-411. (In Chinese)
[4] X. H. Lan, “The Design of Interrupt Device Driver in Embedded Linux

Operating System,” Application Research of Computers, vol. 20, pp. 96-
98, 2003. (In Chinese)

[5] S. Y. Zou, Design and application of Linux embedded system, Beijing:
Tsinghua University Press, 2002. (In Chinese)

[6] W. X. Tian, L. L. Zhang, Embedded Linux programming, Beijing:
Tsinghua University Press, 2017. (In Chinese)

94

Advances in Economics, Business and Management Research (AEBMR), volume 23

	I. Introduction
	II. System Introduction
	A. Foreign Factory Test System Structure
	B. A Brief Introduction to the Structure and Function of the New Factory Test Management System

	III. Test Flow of Factory Test Management System
	IV. Communication protocol for factory test management system
	A. Protocol Format Table of Factory Test
	B. Communication Command Table of Control End and Test End

	V. Software Implementation of factory test Management system
	A. Software Implementation of Control End
	1) Embedded Linux Customization and Migration
	2) Development of Linux device drivers
	3) Design of embedded MiniGUI

	B. The Software Implementation of Test End

	VI. Conclusion
	Acknowledgment
	References

