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Abstract: 3D printing, a kind of emerging technology in additive manufacturing (AM), has been 
applied in many areas and aroused significant interests in academia and industry, for it promotes the 
development of democratizing design and manufacturing at lower overall costs. However, most 3D 
printers use open-loop stepper motor in their extrusion systems, which leads to unstable printing 
quality because it cannot change extrusion speed accordingly when manufacturing defects occur. 
Addressing this problem, this paper focuses on improving 3D printer feeding motor’s ability of 
responding to inconstant filament diameter and provides a feasible solution including a conceptual 
design for feeding motor adaptive control as well as the possible printer configurations. In addition, 
by comparing series simulation results between the performance of stepper motor and servomotor 
operating within 3D printer feeding system, we conclude that servomotor can achieve and stabilize 
at a target value in a shorter time, thus inconstant extrusion caused by filament diameter variations 
and the slippage can be solved. 

1. Introduction 

Additive manufacturing (AM), which builds up 3D objects by adding layer-upon-layer of 
material, has been applied successfully into commercial use. Among different AM technologies, 3D 
printing, which uses the principle of Fused Deposition Modelling (FDM), is the most popular 
technique because it is relatively cheap and easy to set up. In FDM, a print head melts and deposits 
a thread of thermoplastic material onto a substrate. After being extruded through the print head, the 
material solidifies and attaches to the previous layers, and thus the building process begins [1]. By 
providing more design flexibility, reducing the need for assemblage, and improving time and cost 
efficiency in production run, 3D printing extends the possibilities of the modern production system 
and has received a lot of popular press attention [2]. It is also predicted that it could be used as a 
consumer technology business model and even enhance student engagement in education [3], [4].  

Although 3D printing is a valuable addition to classic manufacturing, it lacks adequate monitor 
and control system to achieve its full potential on parts’ mechanical and surface qualities. Currently, 
several research has been conducted to monitor extrusion process and to improve surface quality. 
Augmented reality technique is used to monitor the whole printing process by detecting possible 
printing errors when geometry mismatching happens [5]. A segmentation method is proposed to 
improve surface quality, which generates parts with higher haptic and visual quality by printing 
partitioned 3D model and then assembling it following specific order [6]. It is also possible to detect 
the material deposition status by measuring the current supplied into the motor since the load on the 
feed motor is related to the extrusion pressure on the nozzle [7]. Furthermore, real-time filament 
slippage is measured and reduced by implementing closed-loop control on printing extruder using 
difference between feeding gear speed and filament speed as feedback, along with microscope 
video camera and image processing [8]. 

Unfortunately, since the extrusion speed is often set ahead, most research assumes that there is 
constant extrusion throughout the printer extruder, which is not true. Defects in the solid filament 
such as deviations of diameter and voids are unavoidable and unpredictable. Feeding filament with 
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nozzle is further related to solidity ratio SR, bead width wbead, layer height hlayer, and print speed 
vprint.                                                 

ሶܸ௜௡௣௨௧ ൌ ௙௘௘ௗݒ ൈ ௙௜௟௔௠௘௡௧ܣ ൌ ܴܵ ൈ ௕௘௔ௗݓ ൈ ݄௟௔௬௘௥ ൈ ௣௥௜௡௧ݒ ൌ ሶܸ௢௨௧௣௨௧                (2) 

3. Motor Simulation 

Considering essential elements for motor simulation, such as motor volume, torque output, and 
operating power, hybrid synchronous stepper motor and permanent-magnet synchronous 
servomotor are simulated based on their mechanisms and their simulation results are compared.  

Key feature to describe hybrid synchronous stepper motor is electromagnetic torque ௘ܶ, which is 
generated by the interaction among phase current, flux, and detent torque ௗܶ௠ . Those three 
parameters mentioned are further related to number of teeth p, maximum flux ߰௠, and position 
angle ߠ, as shown in Eq.3. Moreover, electromagnetic torque ௘ܶ can also be expressed as Eq.4 in a 
dynamic manner, where ܬ is total moment of inertia, B is viscous damping coefficient, ߱ is angular 
velocity, and TL is load torque [10].  

௘ܶ ൌ െ߰݌௠ sinሺߠ݌ሻ െ ௠߰݌ sin ቀߠ݌ െ
గ

ଶ
ቁ െ ௗܶ௠sin	ሺ2ߠ݌ሻ             (3) 

௘ܶ ൌ ܬ ௗఠ
ௗ௧
൅ ߱ܤ ൅ ௅ܶ              (4) 

As for permanent-magnet synchronous servomotor, its mathematical model is built on following 
assumptions: 

i. Coils are symmetrically distributed, wear on the iron core is negligible, and the generated 
magnetomotive force along air gap follows sinusoidal distribution; 

ii. There is no saturation of magnetic circuit, mutual inductance and self-inductance of each coil 
are constant, and effect of frequency and temperature change on winding resistance is insignificant. 

Final mathematical model of permanent-magnet synchronous servomotor can be described 
through voltage and flux linkage in Eq.5, as well as electromagnetic torque and dynamic expression 
in Eq.6. Voltage u, flux linkage ߰, current i, and electromagnetic torque	 ௘ܶ  are first obtained in 
Cartesian coordinate system, and then they are converted to dq0 coordinate system via Park and 
Clarke transformations, where subscripts q and d stand for axis in dq0 coordinate, R is rotor 
resistance, ௅ܶ is load torque, ௡ܲ is number of pole-pairs, L is inductance, ߰௙ is permanent magnet 
flux, ߱ is motor angular velocity, ܬ is total moment, and C is damping ratio [11]. 

൬
ଓ௤ሶ
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௅
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௘ܶ ൌ
ଷ

ଶ ௡ܲ߰ௗ݅௤ ൌ ܬ ௗఠ
ௗ௧
൅ ߱ܥ ൅ ௅ܶ             (6) 

Following Eq.1 and Eq.2, motor load torque and accuracy of speed adjustment can be known. 
For common FDM 3D printer using filament diameter of 1.75mm, feed rate is 1mm/s, u0 is 20 
kN∙s/m2, n is 1/3, Kp is 1.9855, Kd is 4, and feeding gear radius is 5mm. After plugging parameter 
values into the equations, driving force Fdriving should be larger than 30 N, and thus load torque on 
motor should be larger than 0.15 N∙m after multiplying driving force with feeding gear radius. 
Furthermore, giving feeding gear diameter is 10mm, filament diameter is 1.75 mm േ 0.05, print 
speed is 30 mm/s, solidity ratio is 1, bead width is 0.667mm, and layer height is 0.4mm, the motor 
speed is calculated within the range of 18.45 rpm and 21.65 rpm, meaning that the motor should be 
able to adjust its speed at an accuracy less than 3 rpm.  

Provided with motor load analysis and feed rate parameters, stepper motor of type SS1703A15A 
and servomotor of type HF-KP13 made by Mitsubishi Electric are chosen to be simulated. Among 
seven general modules used in simulations for both types of motors, speed setup, load, and display 
modules have same parameter settings, respectively: (1) speed setup module assigns two speed 
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recording (Fig. 5(b)). Given taken images, filament diameter and corners can then be identified by 
Carsten Steger algorithm, which could achieve subpixel accuracy by extracting lines based on 
differential geometry and Gaussian smooth [12]. When adjusting motor speed, ideal feed rate is first 
calculated from Eq.2 and the following control mechanism in [8] can be adopted. In this way, an 
adaptive control is formed. One thing to notice is that regardless of motor types, it may be hard to 
change motor speed in a narrow range such as within 3 rpm in this study. Therefore, a gearbox 
might be required to achieve precise control. 

5. Conclusion 

In this paper, simulation performances of stepper motor under both open-loop and closed-loop 
situation along with servomotor under closed-loop situation are analysed and compared. Results 
show that the problem of step loss can be solved after replacing stepper motor with servomotor. 
And the steady state value agrees to the target value well. Therefore, servomotor has the best 
performance for improving 3D printer feeding motor’s ability of responding to inconstant filament 
diameter. Finally, a whole process of precise 3D printing using servomotor is proposed, and we will 
conduct further experiments in the future. 
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