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researchers designed a variety of recommender systems [1, 2]. The well-known recommender 
systems include Amazon, Grouplens, and Ringo [8]. Being user-centered, these recommender 
systems are mainly based on user evaluations for resources (or ratings) to obtain user data, analyze 
user interest, and finally deduce user interest in new resources.  

At present, collaborative filtering (CF) [4] and content-based recommendations are most widely 
used. Furthermore, hybrid algorithms are also applied in recommendation technologies. The 
designers of most recommenders, however, still face data sparsity and the cold start problems. The 
data sparseness problem refers to the fact that the amount of items (films in our case) to which users 
have given ratings is too small. Moreover, the data sparseness leads to the increase of complexity of 
similarity calculations. The cold start problem is the situation in which the new items appear in the 
system without any user’s ratings attached or new users who have yet to get a chance to give ratings 
to any items. Therefore, it is difficult to deliver efficient recommendations or even launch the 
recommendation process in certain cases. In a nutshell, personalized recommendation technique is 
worth of further investigation. We plan to improve the classification accuracy of films by applying 
the EM algorithm to videos/films recommendation. 

We describe and compare both recommendation algorithms, K-nearest neighbour and EM, in 
Section 2. Related experiments and result analysis are presented in Section 3. We conclude our 
paper in Section 4.  

2. Recommendation Algorithms 

In order to offer personalized recommendations and solve the problem of information overload, 
recommender systems are widely used to recommend products and services to users. For example, 
the recommender system can select and recommend several films that users are most likely keen on 
from thousands of films. Due to the widespread use of recommender systems, researchers have 
done a lot of investigation into recommendation algorithms. Let us take the film recommendation 
for example. 

2.1.  K-Nearest Neighbor Algorithm 

KNN [5], one of the memory-based methods, uses the entire user-project database to make 
predictions directly. We use the KNN algorithm to predict user ratings and hobbies. Initially, we 
calculate the target user information and other user information to find the users who have similar 
characteristics or hobbies with the target user. When K users (neighbors) with similar interest are 
found, the prediction results can be obtained by integrating the information from neighbors’ history 
record. The KNN algorithm includes both user-based [6, 7] and project-based [8, 9] algorithms. 
According to this characteristic of the KNN algorithm, we can use the user-project interaction data 
[3] to ignore the attributes of the user and the project itself. 

A typical user-based KNN cooperative filtering algorithm consists of two phases: neighbor 
formation and recommendation. The algorithm compares the activity record of the target user with 
other users’ history record T at the neighbor formation stage. Then we find k users whose styles are 
similar to the target user. The record (or data) of the target user is denoted by u (represented by a 
vector), another user's record is denoted by v (v∈T), and the top k most similar records to u are the 
neighbors of u. The similarity between the target user u and its neighbor v can be calculated using 
the Pearson correlation coefficient. 
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where C represents a collection of films that are marked by user u and user v at the same time, ru,i 
and rv,i are the scores (or weight) that the target user u and the neighbor v give to the film i , 
respectively. Besides, ru and rv are the average scores (or weight) given by u and v. The most 
similar users are selected according to the calculated similarity. 

When the nearest neighbor is determined, the target user u use the following formula to derive 
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the predicted score for the film at the recommended phase. 
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where V is a collection of k similar users, rv,i is the rating on film i from user v. ru and rv are the 
average score given by u and v respectively, sim(u, v) is the Pearson correlation coefficient 
described above. After the score is predicted, we select the highest rated film recommendation to 
the user. 

The user-based CF lacks scalability and project-based CF overcomes this problem since the latter 
can pre-calculate the similarity between all the films. We can compare the films according to the 
film’s scoring model from the user. We use KNN method to find films with a similar score given by 
different users, and use the following formula to adjust the cosine similarity. The greater the 
similarity, the shorter the distance between the target user’ review and one of its neighbors’ review. 
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where U is the set of all the users, i and j are films, ru, i is the score of the film i from user u (u∈U), 
and ru is the average score of the user u. We calculate the similarity between pairs of films based on 
the user score of the film. According to the calculation results, k films that are most similar with the 
target film is selected and the target user rating on the target film is generated using the following 
formula. 
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where J is a collection of similar k films, ru,j is the score of user u on the film j, and sim(i, j) is the 
similarity between the film i and j defined above. The idea is to use the user scores of similar films 
to speculate their scores of a target film and the films with the highest scores will be chosen to form 
part of the recommendation. 

Being one of the mainstream algorithms for collaborative filtering, the KNN’s advantages are 
obvious.  KNN can be used in combination with clustering algorithms to reduce the amount of 
computation [11]. The improved KNN algorithm has higher accuracy and flexibility. For example, 
one of the many KNN variations is based on weighted distance to improve accouracy [12]. Because 
our work presented here mainly deals with the comparison of the KNN algorithm and the EM 
algorithm in terms of classification accuracy. For simplicity, we only stick to the basic verision of 
the KNN and EM algorithms.  

2.2.  EM Algorithm Based on Bayesian Classifier  

The EM (Expectation Maximization) algorithm, an iterative algorithm for maximum likelihood 
estimation, is widely used with incomplete data. The algorithm consists of two steps: the 
Expectation Step (E-step) and Maximization Step (M-step). 

In the process of E-step, existed parameters (the films that the target user label) are usually used 
to estimate and fill the incomplete parts of the data. Each object X is assigned to cluster Ck with 
probability P (Xi∈Ck), and the formula is as shown in formula (5). Where P (Xi|Ck) represents the 
cluster membership probability of Xi in cluster Ck. 
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In the M-step of maximizing the likelihood estimation, each parameter is re-estimated. The 
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