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Abstract: This paper proposed a solution method for the nonlinear frequency response analysis of 
structures combining the Nonlinear Single Resonant Mode (NSRM) theory and eigenvector 
perturbation theory. The NSRM theory assumes that only the mode in the vicinity of a resonant 
mode has nonlinear behavior, and the non-resonant mode can be expressed by a linear combination 
of a set of associated linear normal modes. The describing function (DF) method is used to evaluate 
the generalized quasilinear matrix, which is treated as a perturbation of the underlying linear system. 
Finally, a numerical example is presented to show the accuracy of the proposed method. 

1. Introduction 
The nonlinear modal superposition method, which is considered as one of the most attractive 

approach for large-scale structures. The concept of nonlinear normal modes (NNMs) was firstly 
introduced by Rosenberg[1]. And then, the nonlinear single resonant mode (NSRM) method was 
developed by [2]-[5] to approximate the solution in the vicinity of a resonant mode. This method 
gives satisfactory results for the case in which t there is no other mode closes to the resonant mode. 
Recently, the method is used by Ahmadian and Zamani[6] to identify the nonlinear boundary effects 
of a cantilever. The essence of NSRM is the assumption that the mode of vibration in the resonant 
condition is close to the nonlinear normal mode and only one mode has nonlinear behavior, and the 
participation of the non-resonant modes is relatively small and can be expressed by the linear modal 
parameters. Furthermore, the nonlinear mode can be expressed as a linear combination of a set of 
associated linear normal modes. The component of each linear mode is called nonlinear mode 
participation factor[4]. 

The describing function (DF) method[7] is used to evaluate the generalized quasilinear matrix, 
which can be treated as a perturbation of the underlying linear system. Therefore, the eigenvalue 
perturbation theory[8] is adopted to approximate nonlinear mode participation factors. 

2. Theories 
2.1 Equation of Motion 

The equation of motion for an N-degree-of-freedom nonlinear system subjected to a harmonic 
excitation can be generally expressed as  

( ),nl+ + + =Mx Cx Kx f x x q                                                    (1) 
where M , C , K  are the mass, stiffness and damping matrices, respectively; x , x and x  are 

the acceleration, velocity and displacement vectors, respectively; ( ),nlf x x  is the nonlinear force 
vector and q  is the harmonic excitation force vector. 
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2.2 Nonlinear Single Resonant Method 
According to the NSRM theory, in the vicinity of rth resonant mode the solution of equation (1) 

can be expressed as [4][5] 

( ) ( )
1

n

r r k k
k
k r

u t u t
=
≠

= +∑x φ φ                                                       (2) 

where rφ  is the thr  nonlinear eigenvector, kφ  is the thk  linear eigenvector and ku  is the 
thk  modal amplitude. The above equation can also be rewritten in a matrix form as 

=x Φu                                                                    (3) 
where 1[ , , , , ]r n=Φ φ φ φ


   

Without loss of generality, the nonlinear eigenvector rφ  can be expressed as a linear 
combination of linear eigenvectors 

1

n

r k k
k

b
=

= =∑φ φ Φb                                                           (4) 

where kb  is the nonlinear mode participation factor [4] Φ  is the mode matrix of underlying 
linear system. Substituting equation(3) into equation(1) and premultiplying with TΦ  yield 

( ),T T
nl+ + + =Mu Cu Ku Φ f x x Φ q   

                                                (5) 
where 

T=M Φ MΦ   , T=C Φ CΦ   , T=K Φ KΦ    
Converting equation (5) into frequency domain, one has 

( )( )2 T T
nljΩ Ω− + + + =M C K Φ K X Φ U Φ Q                                          (6) 

where nlK  is generalized quasilinear matrix which is evaluated by DF method [9] nlK  relates to 
U , and excitation frequency Ω  if the nonlinear force depends on velocity x .  

2.3 Eigenvector Perturbation Theory 
The solution to the generalized eigenvalue problem is given as 

= λKφ Mφ                                                                  (7) 
T =φ Mφ I                                                                  (8) 

where M , K  are the mass, stiffness matrices; λ , φare eigenvalues and eigenvectors. 
Suppose that iλ  and iφ  are the thi  eigenvalue and eigenvector, thus we have 

i i iλ=Kφ Mφ                                                                (9) 
Assume that ∆M and ∆K  are small perturbations of matrices M  and K  

= + ∆

= + ∆

M M M
K K K

                                                             (10) 

It is expected that the new eigenvalues and eigenvectors to be similar to the original, plus small 
perturbations 

i i iλ λ λ= + ∆                                                                (11) 

i i i= + ∆φ φ φ                                                               (12) 
According to the first order eigenvalue perturbation theory[8] 

( ) ( )1 T
i i i iλ λ∆ = −φ ΔK ΔM φ                                                    (13) 

( ) ( )1 1

1

n

i ij j
j=

∆ = β∑φ φ                                                             (14) 

where，the parameter ( )1
ijβ can be calculated by 
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2.4 Combination of Eigenvector Perturbation and NSRM 
By neglecting the off-diagonal items in equation(6) and rearranging in terms of reacceptance, the 

following equation is obtained 
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Where 2 2 , 1, 2 ;T
ss s s s nl sj c s n s rΛ Ω Ω ω= − + + + = ≠φ K φ   

2 2 2 2 2

1 1 1

n n n
T T

rr k k k k k nl
k k k

b j b c bΛ Ω Ω ω
= = =

 = − + + + 
 

∑ ∑ ∑ b Φ K Φb  

Because it is assumed that the contribution of non-resonant mode is relative small, the term 
T
s nl sφ K φ  can also be neglected as suggested in [4]. This simplification is followed in this paper in 

the subsequent discussion. Pre-multiplying both sides of equation(16) by Φ  and combining 
equation(3), one obtains 
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From another point of view, the generalized quasilinear matrix nlK  can be treated as a 
perturbation of the underlying linear system. Applying equation(15), the nonlinear mode 
participation factors can be approximated by 

2 2

1 , 1 ,

1
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k r nl k
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−

≈

φ K φ 

                                          (18) 

Substituting equation(18) into equation(17) yields a set of complex algebraic equations . It can 
be solved using the Newton-Raphon method. 

3. Numerical Example 
Consider a mass-spring system with 5 DOFs as illustrated in figure 1. The mass, damping, and 

stiffness are 1 5~ 1m m kg= , 1 5~ 0.03 sec/c c N m= , 1 5~ 100 /k k N m= , respectively. The third 
spring is assumed to be nonlinear, whose characteristic is given by 
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( ) 3
nlf y yα=                                                               (19) 

Where the nonlinear coefficient 32.4 /N mα = . 

m1 m2 m3 m4 m5

k1 k2
k3 k4 k5

c1 c2 c3 c4 c5

F

 
Fig.1. Model of the 5-DOF system 

The harmonic excitation force ( )2cosF t= Ω is applied on 2m . Figure 2 shows the frequency 
response of 1m ; figure 3 and 4 give the frequency response in detail in the vicinity of the first and 
second modes respectively. The results suggest that the proposed method has a good agreement with 
the harmonic balance method. 
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Fig. 2. Frequency response of m1 
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Fig. 3. Frequency response of m1 (the first mode in detail) 
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Fig. 4. Frequency response of m1 (the second mode in detail) 

4. Conclusion 
An efficient solution method for the nonlinear frequency response analysis of structures is 

proposed, which combined the describing function method, nonlinear single resonant mode and 
eigenvector perturbation. The nonlinear stiffness matrix, which is evaluated by describing function 
method, is treated as a perturbation of the underlying linear system. As a simple numerical example, 
a 5-DOF mass and spring system is analyzed and the results are compared with harmonic balance 
method. The results show that the proposed method has a good agreement with the harmonic 
balance method. 
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