
 

Solitary wave solutions for high- order nonlinear Camassa–Holm 

equation  

Chun-Huan Xiang1,a , Hong-Lei Wang2,b 
1School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, P.R. 

China 

2College of medical informatics, Chongqing Medical University, Chongqing, 400016, P. R. China 

aemail: w825900@163.com, bemail: w8259300@126.com 

Keywords: nonlinear, Camassa–Holm equation, perturbation method, Solitary wave solutions 

Abstract: The solitary wave solutions to class of nonlinear fourth order variant of a generalized 

Camassa–Holm equation is investigated by employing the interesting perturbation method. The 

solitary wave solutions to Camassa–Holm equation is given in the form of Jacobi functions and 

expressed by the hyperbolic functions, the trigonometric functions with different modulus k. The 

numerical results for different types of solutions of the nonlinear Camassa–Holm equation  are simply 

discussed.  

1. Introduction 

This perturbation method is more powerful to seek the exact solutions of the nonlinear partial 

differential equations in mathematical physics and investigation solutions for nonlinear equations is 

an important subject because they play important role in understanding the nonlinear problems. 

Recently, various powerful methods to deal with the evolution nonlinear equation are presented, such 

as Darboux transformation [1], the extended tanh-function method [2], the F-expansion method [3], 

homotopy analysis method [4], the Geometric Integrability method [5]. [6] presented numerical 

solutions of the time-dependent form and a discussion of the Camassa–Holm equation as a 

time-dependent Hamiltonian system. Cooper and Shepard [7] derived an approximate solitary wave 

solution to the Camassa–Holm equation using some variational functions. The high-order nonlinear 

Camassa–Holm equation[8-12] is  investigated by employing the perturbation method in this paper.  

2. The  nonlinear Camassa–Holm equation and perturbation method  

The Camassa–Holm equation was proposed by Camassa and Holm [13] as a model equation for 

unidirectional nonlinear dispersive waves in shallow water. The nonlinear Camassa–Holm equation 

can be rewritten as  

                             0)()1(a - 2  xxxxxxxxxxxxtxxt uubuuuuuubuu                                     (1) 

where  ,,, ba are known constants. Using the wave variable ctx  ,where c is wave speed, and 

proceeding as before we find 
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Integrating (2) with respect to   and neglecting constants of integration we obtain  
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The Eq.(3) will be dealed with the perturbation method to obtain the solitary wave solutions.  

For a given nonlinear equation as the follow 

0,...),,,,,( xtttxxtx uuuuuuG  

where with the expression as ctx  , where c 

denotes the wave speed, then G leads to an ordinary differential equation.  

                                                0,...),,,,(  uuuuG                                                               (4) 
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The perturbation expand is employed to obtain the approximation evolution solution for nonlinear 

equation. 
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where a is small parameter, y is the solitary functions, with the following the relations: 
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Here,  yaau 10)(   is used in the Eq.(5) in this work. Substituting Eq. (5)-(7) into Eq.(3) and 

equating to zero the coefficients of all powers of y yields a set of equations, the parameters are 

obtained .  

3. Numerical example  

We employ the perturbation method for the nonlinear equations (3), the useful expression (6) (7) is 

used. Substituting Eq. (5)-(7) into Eq. (3), and equating the coefficients of all powers of y to zero, the 

first equations as follows: 
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Eq.(8)-(12) can be solved and obtain the relation between the parameters.                                                  
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The Solitary wave solutions for Eq.(1) is given in the Jacobi functions forms 
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From the above equation (13)-(15), when 0k  or 1k , the Eq. (13)-(15) are reduced into 

trigonometric or hyperbolic solutions for Eq. (1) 

0k  
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The simulation figure for Eq.(13)-(15) is shown in Fig. 1, the parameters are k = 0.7; a = 0.2; c= -0.3; 

m1=1, m2=-(1+k2), ),20,20(),20,-20(  tx respectively. 

   
 

 

The simulation figure for Eq.(16)-(18) is shown in Fig. 2, the parameters are k = 0.9\0.1\0.8; a = 

0.2\1\-1; c= -0.3; m1=1, m2=-(1+k2), ),35,35(),35,-35(  tx ),5,5(),5,-5(  tx  

),35,35(),35,-35(  tx respectively. 

  
 

 

 

 

 

 

Fig.1  The simulation result is shown for Eq. (13)-(15)  

Fig.2  The simulation result is shown for Eq. (16)-(18)  
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4. Conclusions 

The nonlinear Camassa–Holm equation is investigated in this manuscript and obtained an excellent 

analytic approximation to the family of solitary solutions by employing the perturbation method, 

which performance provides us with a convenient way to control the convergence of approximation 

series. The simulation figures for the evolution solutions with some parameters are shown. We 

demonstrated the accuracy and efficiency of this method by solving for the considered nonlinear 

differential equation system.  
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