
 

Online Learning Sum-Product Networks for Language Modeling 

Yu Zhong Zhang
1, a *

 
1School of Mathematics and Information Technology, Yuxi Normal University, Yuxi, Yunnan, China 

azh1011@yxnu.net 

*The Corresponding author 

Keywords: Sum-product networks; Language models; Oline learning; Deep Learning 

Abstract. Sum-product networks (SPNs) have recently proposed as an remarkable representation due 

to their dual view as a special deep neural network with clear semantics and a probabilistic graphical 

model for which inference is always tractable. SPNs have been successfully applied in Computer Vision 

and Natural Language Processing. We used the hidden layers of SPNs to model complex dependencies 

among words and we used SPNs online learning algorithm to improve model learning speed and SPNs 

structure learning algorithm to improve modeling capabilities. Our empirical comparisons with other 

previous language models indicate that our online learning SPNs has better performance. 

Introduction 

Language model is the most important part of natural language processing, and has been widely used in 

text classification, machine translation, speech recognition, and information retrieval. In general, they 

model the probability distribution of the sequence of words 1
mw  in a transcription as 

1
1 11

( ) ( | )
mm k

k k nk
P w P w w 

 
   where j

iw  is a sequence of words 1 1, , , ,i i j jw w w w  .A basic language model 

is the N-gram model，which predicts the next word based on previous 1n  words. However, N-gram 

model requires a considerable amount of training text to determine the parameters of the model. When 

n is large, the model's parameter space is too large. So the neural network language model and other 

high-level language model has gradually become a hot research. 

More complex language models include the log-bilinear model [1], feedforward neural networks [2], 

and recurrent neural networks [3]. The log-bilinear model is a probabilistic graphical model that encodes 

the dependencies between all pairs of words in a vocabulary. It performs well but can not take advantage 

of the rich information that exists in three or more words.  Bengio et al.[2] used a three layer 

feedforward neural networks to build a language model. They used word distributed representation to 

solve the sparse data on the impact of statistical modeling, while overcoming the dimension of the model 

parameters of disaster problems.  Neural network uses only one hidden layer to capture the 

dependencies among words, without incurring too large a penalty in training time. Mikolov et al.[3] used 

a recurrent neural networks as a language model. An RNN is similar to a feedforward neural network in 

having an input layer of words that is connected to a hidden layer, which in turn is connected to an 

output layer representing a probability distribution over words. The biggest advantage of the recurrent 

neural network is that it can really make full use of all the above information to predict the next word. 

The use of recurrent neural network is very difficult to use, if the optimization is not good, long distance 

information will be lost, and even can not reach the window to see the effect of a number of words. In 

order to improve the RNN language models performance, Mikolov et al. [3] augmented them with 

contextual information via latent Dirichlet allocation [4] to obtain state-of-the-art results. 

In recent years, there has been renewed interest in learning rich, tractable models, on which exact 

probabilistic inference can be performed in polynomial time(e.g. Sum-Product Networks [5]). 

Wei-Chen Cheng et al. [6] has firstly used SPNs to function as a language model. They proposed SPNs 

is able to encapsulate multiple hidden layers while maintaining tractable inference and training. 

Empirically, it achieves better predictive accuracy than the aforementioned language model. But they 

used a predefined SPNs architecture that can not fit the different types of data. And they used the 

7th International Conference on Social Network, Communication and Education (SNCE 2017)

Copyright © 2017, the Authors. Published by Atlantis Press. 
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/). 

Advances in Computer Science Research, volume 82

115



 

discriminate batch parameter leaning, this kind of parameter learning method causes the model to learn 

slower. In this paper, we use the SPNs structure learning algorithm to generate a model structure directly 

from the input data and we used SPNs online parameter learning algorithm to speed up model leaning 

time. 

Sum-Product Networks 

Sum-product networks (SPNs) were first proposed by Poon & Domingos [5] as a new type of 

deep architecture include a rooted acyclic directed graph with interior nodes that are sum nodes and 

product nodes while the leaves are tractable distributions, including Bernoulli distributions for discrete 

SPNs and Gaussian distributions for continuous SPNs. The edges emanating from sum nodes are 

labeled with non-negative weights w . An SPN encodes a function ( )f X x  that takes as input a 

variable assignment X x  and produces an output at its root. This function is defined recursively 

at each node n as follows: 

( ) ( )

( )

Pr( )         if is Leaf(n)

( ) ( )  if is Sum(n)

( )    if is Product(n)
i

n n

root x i i child n

i child n

X x

f x w f x

f x

 


 







                                                                          （1） 

Here, n nX x  denotes the variable assignment restricted to the variables contained in the leaf n .If 

none of the variables in leaf n  are instantiated by X x then Pr( ) Pr( ) 1n nX x    . Note also that if leaf 

n  contains continuous variables, then Pr( )n nX x  should be interpreted as ( )n npdf X x . 

An SPN can also be viewed as encoding a joint distribution over the random variables in its leaves 

when the network structure satisfies certain conditions. These conditions are often defined in terms of 

the notion of scope. 

Definition 1 (Scope). The scope(n) of a node n is the set of variables that are descendants of n. 

Definition 2 (Completeness) An SPN is complete if all children of the same sum node have the 

identical scope (i.e, ( ),     ( ) ( ')c children Sum scope c scope c    ) 

Definition 3 (Decomposability) An SPN is decomposable if all children of the same product node 

have disjoint scope(i.e , ' ( ) and c c',c c children Sum   ( ) ( ')scope c scope c  ) 

The decomposability here allows us to interpret the product nodes as computing factored 

distributions with respect to disjoint sets of variables, thus ensuring an efficient distribution of the 

product within the sub-level. Similarly, completeness allows us to interpret the sum node as a mixture of 

distributions of children encoded because they all have the same range. Each child is a mixture 

component whose mixing probability is proportional to its weight. Thus, in a complete and 

decomposable SPN, the sub-SPN according to each node can be interpreted as encoding 

(non-normalized) joint distribution over its range. And as long as all the nodes of SPNs set value 1, 

SPNs can effectively calculate the partition function so that it can perform a exact inference in the size 

of networks. 

When all sum nodes are complete and all product nodes are decomposable, an SPN is called valid, 

which ensures that the SPN value for some evidence is proportional to the probability of the evidence 

(i.e, Pr( ) ( )rootx f x ). This means that we can answer the inference queries 1 2Pr( | )x x  by computing two 

SPN evaluations 1( )rootf x  and 2( )rootf x : 

1 2
1 2

2

( , )
Pr( | )

( )

root

root

f x x
x x

f x
                                                                                                             (2) 

 

SPNs can be understood as a deeply computable probabilistic graphical model, unlike Bayesian 

networks and Markov networks where inference may be exponential in the size of the network, 

inference in SPNs is in time linear in the size of the network. SPNs are deep neural networks restricted 

to sum and product operators. It is easy to see that the node calculates a linear combination of its child 

nodes. A product node can be interpreted as the sum of its child nodes in the log domain. Thus, the 

Advances in Computer Science Research, volume 82

116



 

product network can be viewed as a neural network with logarithmic and exponential activation 

functions. 

 

Figure 1.  Finite A simple SPNs architecture with the distribution of leave nodes 

SPNs Parameter Learning 

The weights of an SPNs are its parameters. They can be estimated by maximizing the likelihood 

of a dataset (generative training) [5] or the conditional likelihood of some output features given some 

input features (discriminative training) by Stochastic Gradient Descent (SGD) [7]. Wei-Chen Cheng et 

al. [6] used the SGD to train the SPNs parameter. Their parameter learning methods are not suitable for 

large text dataset and streaming text data. In this paper, we used SPNs online learning algorithm to 

improve model learning speed. we used the online Bayesian moment matching technique [8] for SPNs 

parameter learning. Bayesian learning begin wih a prior Pr( )w over the weights, learning corresponds to 

computing the posterior distribution Pr( | )w data  based on the data observed according to Bayes’ 

theorem: 

Pr( | ) Pr( )Pr( | )w data w data w                                                                                                       (3) 

Since the data consists of a set of instances 1: 1{ , , }N NX x x , We can rewrite the Bayesian theorem in a 

recursive way, which helps to incremental online learning: 

1: 1 1: 1Pr( | ) Pr( | )Pr( | )n n nw x w x x w                                                                                                (4) 

The parameters of the SPN are made up of weights associated with the edges emitted from each and 

the nodes. The first step is to define a prior over the weights. We start with a prior that consists of a 

product of Dirichlets with respect to the weights . { | ( )}i ijw w j children i  of each sum node i: 

.Pr( ) ( | )i i

i SumNodes

w Dir w 


 
                                                                                                         (5) 

The posterior is obtained by multiplying the prior by the likelihood ( )root xf  of each data instance: 

1: 1 1: 1Pr( | ) Pr( | ) ( )n n n
rootw x w x f x                                                                                                 (6) 

Moment matching is a popular technique to estimate the parameters of a distribution based on the 

empirical moments of a dataset. Moment matching to approximate mixtures of products of Dirichlets 

obtained after processing each data instance by a single product of Dirichlets. When SPN is a tree, all 

time linear moments can be calculated simultaneously on the size of the network. The key is to compute 

two coefficients 0 1,i icoef coef . Once we have the coefficients, we can compute each moment as follows: 

.

0 1
. . ' ' .

'

( ) ( | )( ( ( )))
i

k k
posterior ij ij i i i i ij j iw

j

M w w Dir w coef coef w V e x dw  
                                                       (7) 

Advances in Computer Science Research, volume 82

117



 

SPNs Structual Learning 

Since it is difficult to specify network structures for SPNs that satisfy the completeness and 

decomposability properties, several automated structure learning techniques have been proposed [9] [10] 

[11]. The most prominent general SPNs structure learning algorithm was proposed by Gens [9].  Their 

structure learning techniques are top down approaches that alternate between instance clustering to 

construct sum nodes and variable partitioning to construct product nodes.  

 

Figure 2.  Finite Gens recursive algorithm for learning structure of SPNs 

But their structure learning algorithms cluster instances without ensuring that the clustering 

respects context-specific independences (independences that hold only among instances of a specific 

context or cluster). We used a new SPNs structure learning method that are based on recursively 

extracting rank-one (SVD) submatrices from data. The search for rank-1 submatrices occurs jointly 

over variables and instances, whereas clustering and identifying independencies are two unrelated 

procedures. 

 

Figure 3.  Finite SVD based SPNs structure learning 

Advances in Computer Science Research, volume 82

118



 

SPNs for Language Modeling 

We used SPNs for language modeling. Using a query variable to represent a predict word, we use its 

previous N words as evidence in SPNs. Each previous word is represented by a K-dimensional vector 

where K is the number of words in a vocabulary, we used a bag-of-word(BoW) model to represen a 

word vector. Each vector has exactly 1 at the index corresponding to the word it represents, and is 0 in 

other places. When we predict the thi  words, we have a vector i jv  ( 1 j N  ) at the leaf layer for each 

of the previous N words. 

Firstly, we used SPNs structure learning algorithms to generate a model structure from input train 

dataset matrix. The input data matrix is a word vector matrix that contains the relationship between the 

words. The whole process of taking into account the input data of the original relevant information. 

Each hidden layer of SPNs can mixture the word information. We used the structure learning algorithm 

of SPNs based on SVD. This method is more general than the Wei[6] predefined SPNs language model 

structure, which can fit very well into different types of input data and not bother to design each layer of 

model structure. Secondly, we used online parameter learning algorithm of SPNs to train the weight of 

network. Using SPNs online Bayesian moment matching technique can greatly improve the speed of 

model training . Finally, we have a SPNs language model, we use the MAP [7] inference method to 

predict the conditional probability of the thi  word given its previous N words. 

Experiments 

We performed our experiments on the commonly used Penn Treebank corpus [12], and adhered to the 

experimental setup used in previous work[3], We used sections 0-20, sections 21-22, and sections 23-24 

respectively as training, validation and test sets. We treated punctuation as words, and used the 10,000 

most frequent words in the corpus to create a vocabulary. To evaluate its performance on the test set, we 

used the standard (per-word) perplexity measure. The perplexity (PPL) on a sequence of words 

1, , Mw w  is given by: 

1 11

1

( | , , )

M

M

i ii

PPL
P w w w 

                                                                                                       (8) 

 

We estimated the probability 1 1( | , , )i iP w w w   in PPL as 1( | , , )i i NP w w w   that is given by SPNs.  

Table 1  shows the results of our experiments. The scores of comparison systems are obtained from 

[13], The “Individual PPL” column shows the perplexity score of the respective systems. The “+KN5” 

column shows the perplexity score after taking a weighted average of a system’s predictions and KN5’s 

predictions (both equally weighted). 

 

Table 1  Perplexity scores (PPL) of different language models 

Model Individual PPL +KN5 

KN5[14] 

Log-bilinear model[1] 

Feedforward neural network[2] 

RNN[3] 

LDA-augmented RNN[4] 

WeiSPNs[6] 

OnlineSPNs 

141.2 

144.5 

140.2 

124.7 

113.7 

107.6 

102.5 

 

115.2 

116.7 

105.7 

98.3 

82.4 

81.1 

 

OlineSPNs outperform LDA-augmented RNN and WeiSPN by 11.2% and 5.1% respectively on 

“Individual PPL”, and by 17.2% and 1.3% respectively on “+KN5”. And WeiSPNs spent 40 hours 

training, our OnlineSPNs only spent only 2 hours traing. 

Advances in Computer Science Research, volume 82

119



 

Summary 

We presented the OnlineSPNs that is used for language modeling. Our empirical comparisons with five 

previous language models on the standard Penn Treebank corpus demonstrate the effectiveness of our 

OnlineSPNs. As future work, we want to create a “recurrent” OnlineSPNs to capture long range 

dependencies in word sequences and apply OnlineSPNs to text multi-label classification task. 

References 

[1] Mnih A,Hinton G.Three new graphical models for statistical language modelling[C]// Proceedings 

of the 24th international conference on Machine learning. ACM, 2007: 641-648. 

[2] Bengio Y, Ducharme R, Vincent P, et al. A neural probabilistic language model[J]. Journal of 

machine learning research, 2003, 3(Feb): 1137-1155. 

[3] Mikolov T, Karafiát M, Burget L, et al. Recurrent neural network based language 

model[C]//Interspeech. 2010, 2: 3. 

[4] Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation[J]. Journal of machine Learning research, 

2003, 3(Jan): 993-1022. 

[5] Poon H, Domingos P. Sum-product networks: A new deep architecture[C]//Computer Vision 

Workshops (ICCV Workshops), 2011 IEEE International Conference on. IEEE, 2011: 689-690. 

[6] Cheng W C, Kok S, Pham H V, et al. Language modeling with sum-product networks[C]//Fifteenth 

Annual Conference of the International Speech Communication Association. 2014. 

[7] Gens R, Domingos P. Discriminative learning of sum-product networks[C]//Advances in Neural 

Information Processing Systems. 2012: 3239-3247. 

[8] Broderick T, Boyd N, Wibisono A, et al. Streaming variational bayes[C]//Advances in Neural 

Information Processing Systems. 2013: 1727-1735. 

[9] Gens R, Pedro D. Learning the structure of sum-product networks[C]//International Conference on 

Machine Learning. 2013: 873-880. 

[10] Dennis A, Ventura D. Learning the architecture of sum-product networks using clustering on 

variables[C]//Advances in Neural Information Processing Systems. 2012: 2033-2041. 

[11] Dennis A W, Ventura D. Greedy Structure Search for Sum-Product Networks[C]//IJCAI. 2015, 

15: 932-938.  

[12] Marcus M P, Marcinkiewicz M A, Santorini B. Building a large annotated corpus of English: The 

Penn Treebank[J]. Computational linguistics, 1993, 19(2): 313-330. 

[13] Mikolov T, Zweig G. Context dependent recurrent neural network language model[J]. SLT, 

2012,12:234-239. 

[14] Kneser R, Ney H. Improved backing-off for m-gram language modeling[C]//Acoustics, Speech, 

and Signal Processing, 1995. ICASSP-95., 1995 International Conference on. IEEE, 1995, 1: 

181-184 

Advances in Computer Science Research, volume 82

120




