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Abstract: Obstacle identification has been widely studied as part of the broader obstacle detection 
research area for Autonomous Vehicles (AV). Existing in-vehicle sensing systems are concentrated 
on obstacle detection for pedestrian or vehicle, and limited work has been conducted on multi-class 
obstacle classification. In the process of obstacle identification, the selection of classification features 
is particularly critical. As a set of features to describe a given shape or contour, shape descriptor has 
attracted much attention in recent years and play an important role in pattern recognition. This paper 
proposed a shape descriptor based multi-class obstacle identification method where the traffic 
obstacles (in the front of self-vehicle) be classified into one of four classes: vehicle, lateral moving 
pedestrian, longitudinal moving pedestrian, and unknown (such as trees, road lamp, barricade etc.). 
Here a variety of shape descriptors extracted from the contour curve are involved, such as 
Rectangularity, Compactness, Elongation, Circularity, Shape Context, and Axis of Least Inertia. 
Finally, the identification results using these descriptors are contrastive analyzed. Though a single 
shape descriptor does not achieve ideal identification results for traffic obstacle, but this will provide 
a new idea for multi-class obstacle identification using shape descriptor in video for AV. 

I. Introduction 
Over the past few years, obstacle identification has been widely studied as part of the broader obstacle 
detection research area for Autonomous Vehicles (AV). Recently, although great progresses have 
been made in this field, there still exist many issues to be solved especially for applications in urban 
traffic scenarios. Compared to highway, urban traffic is much more complex because of cluttered 
road scenes and diversity of obstacles. However, existing in-vehicle detecting systems are mainly for 
pedestrians or vehicles, limited work has been conducted on multi-class obstacle classification. 
Therefore, one of AV challenges for use in urban traffic is developing advanced in-vehicle detecting 
systems able to reliably detect and identify multi-class obstacles. 

Obstacle detection generally consists of two processes [1]: Regions of Interest segmentation 
(ROIs), target verification and identification. In our previous research works [2-3], we first 
segmented ROIs from traffic scenario according to their disparity in depth map, then extracted 
obstacle’s contour curve using Snake Model. As a follow-up to the above work, we will extracting a 
set of shape descriptors from contour curve.  

Shape descriptors are some set of features that are computed to describe a given shape or contour 
curve. It has attracted much attention in recent years and play an important role in pattern recognition, 
target recognition, product testing, industrial automation, military security and other fields. Reference 
K. Mahdikhanlou [4] proposed a plant leaf classification method using centroid distance and Axis of 
Least Inertia Method, [5] structure a signature system based on extended Shape Context Descriptors, 
and [6] proposed a RGB-D multi-view object detection with object proposals and shape context. 
However, there are limited work has been conducted on obstacle identification using shape descriptor 
for AV. 

This paper will propose a shape descriptor based multi-class obstacle identification method where 
the traffic obstacles (in the front of self-vehicle) be classified into one of four classes: Vehicles, 
Lateral moving pedestrians (LA-P), Longitudinal moving pedestrian (LO-P), and Unknown (such as 
trees, road lamp, barricade etc.). In the process of obstacle identification, other features are not used 
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expect shape descriptors. In order to effectively verify the classification effect of different shape 
descriptors, the test is divided into two stages: 1) pedestrian-vehicle (PV) identification, i.e. the 
sample sets contain only pedestrians and vehicles; 2) pedestrian-pedestrian (PP) identification, i.e. the 
sample sets contain only LA-P and LO-P. This paper will provide a new idea for multi-class obstacle 
identification, though a single shape descriptor does not achieve ideal classification results for traffic 
obstacle. 

In the rest of this paper, section II introduces the shape descriptors. Section III discusses system 
framework and object identification steps. Section IV shows the experimental results and contrastive 
analyses the results. Finally, section V concludes this paper. 

II. Shape Descriptors  
Six main types of shape descriptors are involved in this paper, which are Rectangularity, 
Compactness, Elongation, Circularity, Shape Context, and Axis of Least Inertia. 

A. Rectangularity 
The rectangularity Ra of contour represents the ratio of the area of itself to the minimum enclosing 

rectangle (MER), which can be represented as:   =                                                                                                                                         (1) 

where A0 and AR are the area surrounded by the contour and MER respectively, and Ra reflects the 
area fill level for MER, varies from 0 to 1. 

B. Compactness 
The compactness C (also called shape factor) is determined by the perimeter C and area factor A of 

the target region:  =                                                                                                                                                 (2) 
F=1 when the target is a circle, otherwise F>1. Compactness is a reflection of the compactness of 

the target region and it has the advantage of insensitivity to scale changes. 
C Elongation 
Elongation (also known as eccentricity) is also a description of the target's compactness which 

derived from the region's inertia. Set  = ∑     、 = ∑      are the moment of inertia around the 
X and Y axis of the region respectively,  = ∑        is the inertial product, and p, q are two 
semi-major axis of the inertia ellipse for the region expressed by A, B and C: 

⎩⎨
⎧ =  2  ( +  ) −  ( −  ) + 4     =  2  ( +  ) +  ( −  ) + 4                                                                                              (3) 

And the elongation E is defined as:  =                                                                                                                                           (4) 
where E varies from 0 to 1, and it has maximum value when the target is a circle. 

D. Sphericity 
In the description of a 2D target, sphericity S is defined as: S =     ⁄                                                                                                                                      (5) 

where Ri and Rc represent the inner and outer circle radius of the target region respectively, and both 
of the center of the circle are located in the centroid of the region. S is changed between 0 and 1 and it 
reaches the maximum when the target is a circle region. 
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E. Shape Context[7] 
The basic idea of shape context is to record relative distances from a given point to all other points. 

SC begins by taking N sample points from an object. Typically those sample points are from shape 
edges. For point pi of N sample points for an object, there are N - 1 vectors from pi to all other points 
pj, where i ≠ j. Such vectors strongly indicate the relative positions of all other points pj to pi. The SC 
of pi is defined with following equation: ℎ ( ) = #{ ≠   : ( −   ) ∈    ( )}                                                                                         (6) 
where the bins are normally taken to be uniform in log-polar space and the value of each bin is the 
number of points that are located into this bin. In general, the log-polar is divided into 12 × 5 bins 
which are 12 angles and 5 distances. As a result, there will be N histograms for N sample points of an 
object and such a set of histograms is the shape context descriptors for the object. 

In order to perform matching between two sets of sample points of two objects, denote the shape 
contexts for points pi and qj as hi(k) and hj(j), respectively. As shape contexts are distributions 
represented as histograms, it is natural to use Pearson’s Chi-square (χ2) test statistics as the “shape 
context cost” of matching two points: 

   =  (  ,   ) =   ∑    ( )   ( )    ( )   ( )                                                                                                (7) 
where Cij is the cost between points pi and qj, and hi(k) denotes the k-th bin of pi’s shape context. 
Such cost can give a measurement for the quantified similarity between two points. Finally, an n × n 
cost matrix C can be built. The goal is to find a one-to-one matching that minimizes the total matching 
cost. 

F. Axis of Least Inertia[4] 
The axis of least inertia (ALI) of a shape is defined as the line for which the integral of the square of 

the distances to points on the shape boundary is a minimum. Once the ALI is calculated, each point on 
the shape curve is projected on to ALI. The two farthest projected points say E1 and E2 on ALI are 
chosen as the extreme points. The Euclidean distance between these two extreme points defines the 
length of ALI. Once the axis of least inertia of a shape is obtained, keeping it as a unique reference line, 
symbolic features are extracted from the shape. 

III. Technical Approach 
The complete proposed system pipeline is shown in Fig.1. All components are explained in the 
following sections. 

 Shape 
descriptors 
extraction

Stereovision-
based obstacle 
segmentation

Contour 
extraction using 

DVC model 

Shape descriptor-
based obstacle 
identification

Input Stereo 
Video

Vehicles
LA pedestrians
LO pedestrians
Unknown  

Fig. 1. System framework 
A. Stereovision based obstacle segmentation 
A key technique of vision-based obstacle detection is how to segment obstacle from background. 

Object segmentation is a hard task in highly cluttered urban environments using moving cameras. 
Compared to mono-camera approach like pattern matching and motion analysis, stereovision-based 
approach can segment obstacles from traffic scenario according to their disparity in depth map. Such 
an approach can segment multi-class objects no matter what the object shape is and no matter whether 
the objects are moving or stationary. This is the reason of choosing stereovision in this work. 

B. Contour extraction using DVC Model 
Active Contour Models [8], also called Snakes, is a curves defined within an image domain that 

deform and move to minimize the energy of the fitting error. It is able to extracting contours in a 
2-dimensional image, even in presence of gaps or occlusions, together with its dynamic behavior, 
makes it adequate for delineating rigid objects like vehicles and non-rigid objects like pedestrians. In 
our previous research work [3], we proposed an improved Snake Model, i.e. DVC Model, in order to 
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address some limitations of the classic Snake Model. In this work, after the obstacles be segmented 
from traffic video, we will extract complete contours for them using DVC Model. 

C. Shape descriptors extraction for contour curve 
Six shape descriptors will be extracted from the target contour curve according to 

above-mentioned methods, that is Rectangularity, Compactness, Elongation, Circularity, Shape 
Context, and Axis of Least Inertia, after the contour curve of obstacles are extracted using DVC 
Model. 

D. Multi-class obstacle identification using shape descriptor 
Shape descriptor play an important role in object identification. After 6 shape descriptors are 

extracted successfully, they will are used respectively to identify the obstacle. In this stage, the 
obstacles will be divided into Vehicles, LA-Pedestrian, LO-Pedestrian, and Unknown. In order to 
effectively verify the classification effect of different shape descriptors, the test is divided into two 
stages: 1) pedestrian-vehicle (PV) identification; 2) pedestrian-pedestrian (PP) identification. 

IV. Experimental Results and Discussions 
In this paper, the vehicle-mounted stereo camera Bumblebee3 shown in Fig.2, as a means of the 
obstacle perception, collected a large number of vehicles forward traffic video sequence. After 
stereovision based obstacle segmentation and DVC Model based contour extraction, there are 400 
pedestrian samples with various postures, 400 vehicles samples with different perspective, and 200 
other obstacles are gathered from several traffic scenarios in all. The obstacles are located in the front 
of self-vehicle about 8 to 40 meters, and part of the samples as shown in Fig.2. Moreover, 1000 
samples get from the two publicly available datasets (i.e. Daimer pedestrian dataset [9] and Caltech 
pedestrian dataset [10]) which are gathered with in-vehicle camera. Therefore, the sample set X 
consist of three subset: the pedestrian subset X1, the vehicle subset X2, and Unknown subset X3, i.e. X = {  ,  ,  }.  

  
a)                               b)                                 c)                                      d)               e)           f)             g) 

Fig. 2 Stereo camera Bumblebee3 and some samples of obstacle with contoure curve 
 
1. Experimental Results 
These samples will be tested by the 6 shape descriptors, and the experimental results will be shown 

below respectively. 
A. Rectangularity 
Calculate the Rectangularity Ra of sample set X according to formula   =     ⁄  respectively, 

then estimate their means  ̂  and standard deviations    by the maximum likelihood estimation 
method, as shown in Table 1. (Notes: the experimental result for Unknown dose not shown because 
the value of Ra has a wide variety and it usually be identified by exclusive method, the same below.) 

Table 1 The statistical property and identification capability of Ra  
 Pedestrians  Vehicles LA-Pedestrian LO-Pedestrian    0.5115 0.7887 0.5858 0.4368    0.1052 0.0253 0.0593 0.0862 

between-class distance (BCD)  ̂  −  ̂  = 2.124(    +     )  ̂   −  ̂    = 1.024(     +       ) 
identification capability(IC) 96.6% 69.2% 

Fig.3 shows the histogram of Ra for different obstacles. Where the dotted curve simulates the 
distribution of Ra according to normal curve, the distance between the peaks of curve represents 
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between-class distance. It can be found from Fig.3 that the curve overlap-rate for PV is lower, and that 
for PP is higher. This means that Ra has a stronger identification ability for PV and a weaker ability 
for PP. 

P
V LA-P

LO-P

 
a)                                                  b) 

Fig.3 the histogram of Ra and the analog curve with Gaussian normal function, a) for PV, and b) for PP 
Obviously, it is difficult to describe the degree of overlap-rate between two categories. In order to 

qualitatively analyze the identification ability of Ra, means and standard deviations of sample X are 
involved. Then the identification capability/ probability of Ra can be calculated in terms of the 3σ 
distribution principle for normal curve, that is:  ( −  <  ≤  +  ) = 68.3%,  ( − 2 <  ≤ + 2 ) = 95.4% ,  ( − 3 <  ≤  + 3 ) = 99.7% , and that of other intervals X can be 
obtained by referring to the normal distribution table. Finally, the between-class distance   ,  between 
class    and class    can be calculated by    , =    −    /(  +   ), for example,   ,  =2.124 for 
PV, and the probability for them is 96.6% according to the normal distribution table. The results of   ,  and corresponding identification probability for Ra are shown in Table. 1.  

As shown in Table.1, Ra has a 96.6% ability to distinguish between pedestrians and vehicles, and 
the ability to distinguish LA-Pedestrian and LO-Pedestrian is only 69.2%. 

B. Compactness 
Compute the compactness F of sample X according to  =   4  ⁄  respectively, then estimate 

their μ ̂ and σ ̂ by the maximum likelihood estimation method, as shown in Table 2. 
Table 2 The statistical property and classification capability of F 

 Pedestrians  Vehicles LA-Pedestrian LO-Pedestrian    3.8752 1.4040 3.1498 4.5936    1.1636 0.0977 0.7507 1.0457 
BCD  ̂  −  ̂  = 1.9592(    +     )  ̂   −  ̂    = 0.8037(     +       ) 

IC 95.0% 57.6% 

C. Elongation 
The elongation E of samples are calculated by formula E=p/q and the relevant statistical properties 

are calculated as shown in Table 3. 
Table 3 The statistical property and classification capability of E 

 Pedestrians  Vehicles LA-Pedestrian LO-Pedestrian    0.9465 0.7064 0.9528 0.9403    0.0227 0.0948 0.0167 0.0261 
BCD  ̂  −  ̂  = 2.0391(    +     )  ̂   −  ̂    = 0.2921(     +       ) 

IC 95.8% 22.8% 

D. Sphericity 
The Sphericity SP is evaluated by formula   =     ⁄   for different sample as shown in Table 4. 

Table 4 The statistical property and classification capability of SP 
 Pedestrians  Vehicles LA-Pedestrian LO-Pedestrian    0.1591 0.4746 0.1412 0.1904    0.0391 0.0550 0.0260 0.0327 

BCD  ̂  −  ̂  = 3.3528(    +     )  ̂   −  ̂    = 0.8382(     +       ) 
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IC 99.9% 60.0% 

E. Shape Context(SC) 
Follow the description of the shape context above, divided the log-polar into 12 × 5 bins which are 

12 angles and 5 distances, and 60 (i.e. 12 × 5 =60) shape features SCij, i=1...12, j=1…5, are extracted 
totally after the target contour curve is projected to the corresponding region. Here 100 sampling 
points are extracted from target contour. An analysis for identification results shows that only SC5-3, 
SC5-4, SC5-9, SC5-10 have an ideal distinguish ability for PV, and none of SC have a ideal ability for PP, 
the results as shown in Table 5. 

Table 5 The statistical property and classification capability of SC 5-3, SC5-4, SC5-9, and SC5-10 
 SC5-3 SC5-4 SC5-9 SC5-10 
 Pedestrians  Vehicles Pedestrians  Vehicles Pedestrians  Vehicles Pedestrians  Vehicles    37.2462 775.3873 36.9447 803.9363 36.3367 755.8725 37.8844 823.4216    50.6259 78.6595 49.8990 70.3161 49.4943 77.7243 51.1295 69.7421 

BCD 5.70(    +     ) 6.34(    +     ) 5.66(    +     ) 6.66(    +     ) 
IC 100% 100% 100% 100% 

F. Axis of Least Inertia (ALI) 
According to the description of Axis of Least Inertia (ALI) above to extract the ALI of sample X. 

The corresponding statistical properties shown in Table 6. 
Table 6 The statistical property and classification capability of ALI 

 Pedestrians  Vehicles LA-Pedestrian LO-Pedestrian    9.6294 27.0282 10.6444 8.7844    1.5080 3.5835 1.2057 0.9606 
BCD  ̂  −  ̂  = 3.417(    +     )  ̂   −  ̂    = 0.8586(     +       ) 

IC 99.9% 61.0% 

 
2. Contrast and Analyze 
The identification capabilities (IC) of shape descriptors involved above are shown in Table 7. 

Where the IC for PV be shown in the second column, and that for PP be shown in the third column. 
The symbol ‘--’ denoted there is no corresponding data for them, i.e. the IC is very low or not being 
calculated. 

Table 7 The identification capability using shape descriptors for Multi-class obstacles 

Shape descripors 
Identification Capability(%) 

PV PP 
Ra 96.6% 69.2% 
C 95.0% 57.6% 
E 95.8% 22.8% 

SP  99.9% 60.0% 

SC 

SC5-3 100% -- 
SC5-4 100% -- 
SC5-9 100% -- 
SC5-10 100% -- 

ALI 99.9% 61.0% 
 
It can be seen from the second column of table 5 that all the shape descriptors have an ideal 

identification capability for PV, and the lowest one is 95.0% and the highest one is 100%. However, it 
can be found from the third column that most of the IC for PP are weaker, and the highest one is only 
69.2% and the lowest almost is 0%. 

Through contrastive analysis the IC of 6 shape descriptors, it can be concluded that: 
1) All the shape descriptors have a stronger identification capability for PV, and Shape Context 

factors SC5-3, SC5-4, SC5-9, and SC5-10 are the best ones, SP is followed, and C is the worst. 
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2) Most of the descriptors have a weaker identification capability for PP. As the best one, the IC of 
Ra is 69.2%, ALI is followed, and SC is the worst which has hardly any identification capability.  

3) Only few descriptors have a better comprehensive identification ability for both PV and PP, 
where the best ones are ALI, Ra and SP, and the rest are relatively weaker. 

V. Conclusion 
This paper presents a shape descriptor based multi-class obstacle identification method for AV, 

where the traffic obstacles (in the front of self-vehicle) be classified into four classes: vehicle, 
horizontal moving pedestrian, longitudinal moving pedestrian, and unknown (such as trees, road 
lamp, barricade etc.). As a follow-up work of obstacle segmentation and target contour extraction, a 
set of shape descriptors, such as Rectangularity, Compactness, Elongation, Circularity, Shape 
Context, and Axis of Least Inertia are extracted from the contour curve firstly, and then these shape 
features are used to identify the sample X which consist of vehicle, LM-pedestrians, LO-pedestrian, 
and unknown respectively. Finally, the identification results using different shape descriptor be 
contrastive analyzed, and it can be concluded that though a single shape descriptor does not achieve 
ideal classification results for traffic obstacle, but this can provide a new idea for multi-class obstacle 
identification in video for AV. 
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