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Abstract 

The uncertain nonlinear systems can be modeled with fuzzy equations or fuzzy differential equations (FDEs) by 
incorporating the fuzzy set theory. The solutions of them are applied to analyze many engineering problems. 
However, it is very difficult to obtain solutions of FDEs. 

In this paper, the solutions of FDEs are approximated by two types of Bernstein neural networks. Here, the 
uncertainties are in the sense of Z- numbers. Initially the FDE is transformed into four ordinary differential 
equations (ODEs) with Hukuhara differentiability. Then neural models are constructed with the structure of ODEs. 
With modified back propagation method for Z- number variables, the neural networks are trained. The theory 
analysis and simulation results show that these new models, Bernstein neural networks, are effective to estimate the 
solutions of FDEs based on Z-numbers. 

Keywords: Fuzzy differential equations; Bernstein neural networks; Z- numbers; Uncertain nonlinear systems. 

1. Introduction 

Since the uncertainty in parameters can be 
transformed into fuzzy set theory [1], fuzzy set and 
fuzzy system theory are good tools to deal with 
uncertainty systems. Fuzzy models are applied for a 
large class of uncertainty nonlinear systems, for 
example Takagi-Sugeno fuzzy model [2]. When the 
parameter of an equation are changeable in the manner 
of fuzzy set, this equation becomes a fuzzy equation [3]. 
When the parameters or the states of the differential 
equations are uncertain, they can be modeled with FDE. 

Many FDEs use fuzzy numbers as the coefficients of 
the differential equations to describe the uncertainties 

[4]. The applications of these FDEs are connection with 
nonlinear modeling and control [5-8]. Another type of 
FED uses fuzzy variables to express the uncertainties. 
The study on the solutions of FDEs are applied into 
chaotic analysis, quantum system and many engineering 
problems, such as civil engineering and modeling 
actuators. The basic idea of fuzzy derivative was first 
introduced in [9]. Then it is extended in [10]. The linear 
first-order equation is the most generalized FDE. By 
generalizing the differentiability, [11] gives an 
analytical solution. In [12], the first order FDE with 
periodic boundary conditions is analyzed. Then higher 
order linear FDE are studied. In [13], the analytical 
solutions of second order FDE are obtained. The 
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analytical solutions of third order linear FDE are found 
in [14].  

Too much complexity is involved in solving 
nonlinear FDE. By interval-valued method, [15] 
examines the basis solutions nonlinear FDEs with 
generalized differentiability. [16] uses periodic 
boundary and Hukuhara differentiability to the 
impulsive FDE. [17] suggests some suitable criterion to 
fuzzify the crisp solutions. [18] uses two-point fuzzy 
boundary value for FDE. However, all of above 
analytical methods for the solutions of FDEs are very 
difficult, especially for nonlinear FDEs. 

Numerical solutions of FDEs have been discussed 
by many scientists recently. The numerical solutions of 
first-order FDE is proposed in [19] with an iterative 
technique. [20] uses Laplace transform for second-order 
FDE. By extending classical fuzzy set theory, [21] 
obtains numerical solution of an FDE. The predictor-
corrector approach is applied in [22]. Euler numerical 
technique is used in [23] to solve FDE. Some other 
numerical techniques, such as Nystrom approach [24], 
Taylor method [25] and Runge-Kutta approach [26] can 
also be applied to solve FDEs. However the 
approximation accuracy of these numerical calculations 
are normally less. 

The solution of FDE is uniformly continuous and 
inside compact sets [27]. Neural networks can give a 
good estimation for the solutions of FDEs. [28] shows 
that the solution of ODE can be approximated by neural 
network. [29] discusses differences between the exact 
solution and approximation solutions of ODEs. [30] 
applies dynamics neural networks to approximate first-
order ODE. There are few works on FDE. [31] suggests 
a static neural network to solve FDE. Since the structure 
of the neural network is not suitable for FDE, the 
approximation accuracy is poor. 

The decisions are carried out based on knowledge. 
In order to make the decision fruitful, the knowledge 
acquired must be credible. Z-numbers connect to the 
reliability of knowledge [32]. Many fields related to the 
analysis of the decisions are actually use the ideas of Z-
numbers. Z -numbers are much less complex to 
calculate compared with nonlinear system modeling 
methods. The Z-number is abundantly adequate number 
compared with the fuzzy number. Although Z-numbers 
are implemented in many literatures, from theoretical 
point of view this approach is not certified completely. 

The Z-number is a novel idea that is subjected to a 
higher potential to illustrate the information of the 
human being and to use in information processing [32]. 
Z-numbers can be regarded as to answer questions and 
carry out the decisions [33]. There are few structure 
based on the theoretical concept of Z-numbers [34]. [35] 
proposes a theorem to transfer the Z-numbers to the 
usual fuzzy sets. 

In this paper, a new model named Bernstein neural 
network is used, which has good properties of Bernstein 
polynomial for FDE based on Z-number. The Bernstein 
polynomial has good uniform approximation ability for 
continuous functions [36]. Also it has innumerable 
drawing properties, homogeneous shape-sustaining 
approximation, bona fide estimation and low boundary 
bias. A very important property of the Bernstein 
polynomial is that it generates a smooth estimation for 
equal distance knots [37]. This property is suitable for 
FDE approximation. For more details regarding 
Bernstein neural networks, refer to [38, 39]. 

Two types of neural networks are used namely static 
and dynamic models, to approximate the solutions of 
FDEs based on z -numbers. These numerical methods 
use generalized differentiability of FDEs. The solutions 
of FDE is substituted into four ODEs. Then the 
corresponding Bernstein neural networks are applied. 
Finally, some real examples are used to show the 
effectiveness of the proposed approximation methods 
with the Bernstein neural networks. 

2. Fuzzy differential equation for uncertain 
nonlinear system modeling 

Consider the following controlled unknown 
nonlinear system  
�̇� = 𝑓1(𝑥1,𝑢, 𝑡) (1) 
where 𝑓1(𝑥1,𝑢, t) is unknown vector function, 

nx ℜ∈1  is an internal state vector and mu ℜ∈  is the 
input vector. 

In this paper, the following differential equation 
(FDE) is used to model the uncertain nonlinear system 
(1),  
𝑑
𝑑𝑑
𝑥 = 𝑓(𝑡, 𝑥) (2) 

where nx ℜ∈  is the Z-number variable, which 
corresponds to the state 𝑥1 in (1) ,𝑓(𝑡, 𝑥) is a Z-number 
vector function, which relates to 𝑓1(𝑥1,𝑢), 𝑑

𝑑𝑑
𝑥 is the 
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derivative associated to the Z-number variable. Here the 
uncertainties of the nonlinear system (1) are in the sense 
of Z-numbers. 

In order to use FDE based on Z- numbers, initially 
some concepts of fuzzy variables and Z-numbers. 

 Definition 1(fuzzy variable) If 𝑥 is:  

1) normal, there exists ζ R∈0  in such a manner 

1)( 0 =ζx  ,  

2) convex, ≥−+ ))1(( ζλλζx  min )}(),({ ξζ xx  , 

],1,0[,, ∈∀∈∀ λξζ R   

3) upper semi-continuous on R  , εζζ +≤ )()( 0xx  , 

),( 0ζζ N∈∀ ,0 R∈∀ζ ,0>∀ε )( 0ζN  is a neighborhood,  

4) 𝑥+ = {𝜁 ∈ ℝ, 𝑥(𝜁) ∈ 𝐸|ℝ → [0,1]} is compact, then  
𝑥 is a fuzzy variable. 

The fuzzy variable x  can be also represented as 
[40] 

( )xxAx ,=                   (3) 
where 𝑥 is the lower-bound variable, �̅� is the upper-
bound variable and 𝐴 is a continuous function. 

 Definition 2 (Z- number) A Z-number has two 
components 𝑍 = [𝑥(𝜁),𝑝]. The primary component  
𝑥(𝜁)is termed as a restriction on a real-valued uncertain 
variable 𝜁 . The secondary component 𝑝 is a measure of 
reliability of  x. 𝑝 can be reliability, strength of belief, 
probability or possibility. When 𝑥(𝜁) is a fuzzy number 
and 𝑝  is the probability distribution of 𝜁, the Z-number 
is defined as 𝑍+-number. When both 𝑥(𝜁) and 𝑝 are 
fuzzy numbers, the Z-number is defined as 𝑍−-number. 

The 𝑍+ -number carries more information than the 
𝑍−-number. In this paper, the definition of 𝑍+-number 
is used, i.e., 𝑍 = [𝑥, 𝑝] x  is a fuzzy number and 𝑝  is a 
probability distribution. 

We use so called membership functions to express 
the fuzzy number. The most popular membership 
functions are the triangular function 

( ) 0  otherwise,,)( =






≤≤
≤≤

==
−
−
−
−

x
bc

c
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x cb
ba

cbaF µ
ζ
ζ

ζµ ζ
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    (4) 

and trapezoidal function  

( ) 0 otherwise
1

,,,)( =








≤≤
≤≤
≤≤

== −
−
−
−

xcd
d
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cb
dc
ba

dcbaF µ
ζ
ζ
ζ

ζµ ζ

ζ

   (5) 

 The probability measure is expressed as 

ζζζµ dpP xR
)()(∫=                  (6) 

where 𝑝 is the probability density of ζ  and R  is the 
restriction on 𝑝.  For discrete Z-numbers  

)()()(
1

iix

n

i

pxP ζζµ∑
=

=                  (7) 

 Definition 3 (𝜶- level of fuzzy number) The fuzzy 
number x  in association to the 𝛼 -level is illustrated as  

})(:{][ αα ≥∈= axax R                 (8) 

where 10 ≤≤ α  , .Ex∈   
Therefore }.0)(,{][ 0 >∈== + ζζ xxx R Since 

],1,0[∈α  α][x  is a bounded mentioned as 

.][ ααα xxx ≤≤  The 𝛼 -level of 𝑥 in midst of αx  and 
αx  is explained as  

( )ααα xxAx ,][ =                  (9) 

 αx  and αx  signify the function of 𝛼,  and 

),(αα
Mdx =  )(αα

Udx =  , ]1,0[∈α  . 

 Definition 4 (𝜶- level of Z-numbers) The 𝛼 -level 
of the Z-number ),( PxZ =  is demonstrated as 

( )ααα ][,][][ pxZ =               (10) 

where 10 ≤≤ α . α][ p  is calculated by the Nguyen's 
theorem  

[ ]αααααα PPxxpxpp ,]),([)]([][ ===  

where { }αα ζζ ][|)()]([ xpxp ∈= . So α][Z  can be 
expressed as the form 𝛼 -level of a fuzzy number  

( ) ( ) ( )( )ααααααα PxPxZZZ ,,,,][ ==              (11) 

where )( ααα ζ ipxP = , )(
ααα

ζ ipxP =  , ).,(][
ααα ζζζ iii =   

Similar with the fuzzy numbers [5], the Z-numbers are 
also incorporated with three primary operations: ⨁, ⊖ 
and ⨀. These operations are exhibited by: sum, subtract, 
multiply, and division. The operations in this paper are 
different definitions with [1]. The 𝛼-level of Z-numbers 
is applied to simplify the operations. 
Let us consider ),( 111 pxZ =  and ),( 222 pxZ =  be two 
discrete Z-numbers illustrating the uncertain variables

1ζ and ,2ζ  ,1)( 111 =∑ = k
n
k p ζ  1)( 221 =∑ = k

n
k p ζ  . The 

operations are defined  
𝑍12 = 𝑍1 ∗ 𝑍2 = (𝑥1 ∗ 𝑥2, 𝑝1 ∗ 𝑝2) 

where  ∗∈ {⨁,⊝,⨀} . 
The operations for the fuzzy numbers are defined as [5]  
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[x1⊕x2]α= �x1
α+x2

α,x1
α+x2

α�

[x1⊖x2]α= �x1
α-x2

α,x1
α-x2

α�

[x1⊙x2]α= �x1
αx2

α+x1
αx2

α-x1
αx2

α,x1
αx2

α+x1
αx2

α-x1
αx2

α�

   (12) 

For all 𝑝1 ∗ 𝑝2 operations, we use convolutions for 
the discrete probability distributions 

( ) )()()( 12,22,1121 ζζζ ppppp ini
i

==∗ −∑  

The above definitions satisfy the Hukuhara 
difference [41], 

𝑍1 ⊖𝐻 𝑍2 = 𝑍12 
𝑍1 = 𝑍2⨁𝑍12 

Here if  𝑍1 ⊖𝐻 𝑍2 exists, the 𝛼 -level is  
[𝑍1 ⊖𝐻 𝑍2]𝛼 = �𝑍1𝛼 − 𝑍2𝛼 ,𝑍1

𝛼
− 𝑍2

𝛼
� 

 Obviously, 𝑍1 ⊖𝐻 𝑍1 = 0, 𝑍1 ⊖ 𝑍1 ≠ 0 
Also the above definitions satisfy the generalized 

Hukuhara difference [42]  

𝑍1 ⊖𝑔𝐻 𝑍2 = 𝑍12 ⇔ �1)𝑍1 = 𝑍2⨁𝑍12          
2)𝑍2 = 𝑍1⨁(−1)𝑍12

            (13) 

 It is convenient to display that 1) and 2) in combination 
are genuine if and only if 𝑍12 is a crisp number. With 
respect to 𝛼 -level what we got are �𝑍1 ⊖𝑔𝐻 𝑍2�

𝛼 =

},,[min{ 2121
αααα ZZZZ −− }],max{ 2121

αααα ZZZZ −−  
and If 𝑍1 ⊖𝑔𝐻 𝑍2 and 𝑍1 ⊖𝐻 𝑍2  subsist, 𝑍1 ⊖𝐻 𝑍2 =
𝑍1 ⊖𝑔𝐻 𝑍2 . The conditions for the existence of 
𝑍12 = 𝑍1 ⊖𝑔𝐻 𝑍2 ∈ 𝐸 are  







≤

−=−=







≤

−=−=

αααα

αααααα

αααα

αααααα

12121212

21122112

12121212

21122112

,decreasing ,increasing with
and )2

,decreasing ,increasing with
and )1

ZZZZ
ZZZZZZ

ZZZZ
ZZZZZZ

      (14)  

where ]1,0[∈∀α   
If 𝑥 is a triangular function, the absolute value of the Z-
number ),( pxZ =  is 

|))||||(||,||||(|)( 222111 cbapcbaZ ++++=ζ     (15) 

 If 𝑥1 and 𝑥2 are triangular functions, the supremum 
metric for Z-numbers ),( 111 pxZ =  and ),( 222 pxZ =  is 
given as  

),(),(),( 212121 ppdxxdZZD +=  

 in this case ),( ⋅⋅d  is the supremum metrics considering 
fuzzy sets [5]. ),( 21 ZZD  is incorporated with the 
following possessions:  

),(),(),(
),(||),(

),(),(
),(),(

2121

2121

2112

2121

ZZDZZDZZD
ZZDkkZkZD

ZZDZZD
ZZDZZZZD

+≤
=

=
=++

 

where R∈k , ),( pxZ =  is Z-number and x  is 
triangle function, for proof refer to [43]. 

 Definition 5 (𝜶-level of Z-number valued 
function) Let 𝑍� denotes the space of Z-numbers. 
The 𝛼 −level of Z-number valued function 𝐹: [0, 𝑎] →
𝑍� is  

𝐹(𝑥,𝛼) = �𝐹(𝑥,𝛼),𝐹(𝑥,𝛼)� 
where ∈ 𝑍� , for each ]1,0[∈α . 
With the definition of Generalized Hukuhara difference, 
the gH-derivative of 𝐹 at 𝑥0 is expressed as  
𝑑
𝑑𝑑
𝐹(𝑥0) = limℎ→0

1
ℎ

[𝐹(𝑥0 + ℎ) ⊖𝑔𝐻 𝐹(𝑥0)]           (16) 

 In (16), )( 0 hxF +  and )( 0xF  exhibits similar style 

with 𝑍1 and  𝑍2respectively included in (13). 
If we apply the 𝛼 − level (10) to ),( xtf  in (2), then we 
obtain two Z-number valued functions: 

[ ]),(),,(, αζαζ xxtf  and [ ].),(),,(, αζαζ xxtf   

The fuzzy differential equation (2) can be equivalent to 
the following four ODE  

[ ]
[ ]
[ ]
[ ]





=
=





=

=

),(),,(,
),(),,(,

)2

),(),,(,
),(),,(,

)1

αζαζ
αζαζ
αζαζ
αζαζ

xxtfx
xxtfx
xxtfx
xxtfx

dt
d
dt
d

dt
d
dt
d

              (17) 

The fuzzy model of (1) can be regarded as four ordinary 
differential equations (17). 

In this paper, the FDE (2) is used to model the 
uncertain nonlinear system (1), such that the output of 
the plant 𝑥 can follow the plant output 𝑥1, 

1min xx
f

−                 (18) 

 This modeling object can be considered as: finding 𝑓 ̅ 
and 𝑓 in the fuzzy equations of (17) or finding the 
solutions of these models. It is impossible to obtain 
analytical solutions [44].  

In fact, the nonlinear system can be modeled by the 
neural network directly. However, this data-driven black 
box identification method does not use the model 
information. While the FDE use the model information 
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of the nonlinear system, such as the brief form of the 
differential equation. 

The following theorems give theory support for 
nonlinear system modeling via FDEs based on Z-
numbers. 

 Theorem 1 If the Z-number function 𝑓 and its 

derivative x
f
∂
∂  are on the rectangle [−𝑝, 𝑝] × [−𝑞, 𝑞], 

here 𝑝, 𝑞 ∈ 𝑍�,  𝑍�  is the space of Z-numbers, then there 
exists an unique Z-number solution for the following 
FDE based on Z-numbers  

00 )(),,( xtxxtfx
dt
d

==                (19) 

for all ),( bbt −∈ , pb ≤   
 Proof: We utilize Picard's iteration technique [45] 

to develop a sequence of Z-number functions )(tnϕ  as 

𝜑𝑛+1(𝑡) = 𝜑0 ⊕ ∫ 𝑓�𝑠,𝜑𝑛(𝑠)�𝑑𝑠𝑑
0 =

𝜑0 ⊖𝐻 (−1) ∫ 𝑓�𝑠,𝜑𝑛(𝑠)�𝑑𝑠𝑑
0   

We first validate that )(tnϕ  is continuous and exists 

for all 𝑛. Obviously, if )(tnϕ  exists then )(1 tn+ϕ  also 

exists as  
𝜑𝑛+1(𝑡) = 𝜑0 ⊕ ∫ 𝑓�𝑠,𝜑𝑛(𝑠)�𝑑𝑠𝑑

0 =

𝜑0 ⊖𝐻 (−1)∫ 𝑓�𝑠,𝜑𝑛(𝑠)�𝑑𝑠𝑑
0   

Since 𝑓 is continuous, so there exists 𝑁 ∈ 𝐸 such that 
Nxtf ≤|),(|  for all ],,[ ppt −∈  as well as all 

],[ qqx −∈ . If we set ],[ bbt −∈  for 𝑏 ≤ min (𝑞 𝑁⁄ , 𝑝) 
then it is possible  
�𝜑𝑛+1 ⊖ 𝜑0� = �∫ 𝑓(𝑠,𝜑𝑛(𝑠))𝑑𝑠𝑑

0 � ≤ 𝑁|𝑡| ≤ 𝑁𝑏 ≤ 𝑞  

This validates that )(1 tn+ϕ  acquires values in ],[ qq− . 

Because 
𝜑𝑛(t) = ∑ (𝜑𝑘(t) ⊖𝜑𝑘−1(t))𝑛

𝑘=1   
 for any 1<γ  , we select ),( bbt −∈  such that 
|𝜑𝑘(𝑡) ⊖𝜑𝑘−1(𝑡)| ≤ 𝛾𝑘 for all 𝑘 . This signifies that 
there exists 1<γ  [46]  

|𝜑𝑘(t) ⊖𝜑𝑘−1(t)| ≤ 𝛾𝑘 
 From the mean value theorem [47],  
𝜑𝑘(t) ⊖𝜑𝑘−1(t) =
∫ [𝑓(𝑠,𝜑𝑘−1(𝑠)) ⊖ 𝑓(𝑠,𝜑𝑘−2(𝑠))]𝑑𝑠t
0   

Applying the mean value theorem into the Z-number 
function ),()( xsfxh =  in the two points )(1 sk−ϕ  

and,𝜑𝑘−2(𝑠), 

ℎ�𝜑𝑘−1(𝑠)�⊖ ℎ�𝜑𝑘−2(𝑠)� = ℎ′�𝜓𝑘(𝑠)� �𝜑𝑘−1(𝑠)� ⊖
𝜑𝑘−2(𝑠))  
Taking into consideration x

fxh ∂
∂=′ )(  , we obtain  

𝜑𝑘(t)𝜑𝑘−1(t) = ∫ 𝜕𝜕
𝜕𝜕

(𝑠,𝜓𝑘(𝑠))(𝜑𝑘−1(s)⊖𝜑𝑘−2(s))𝑑𝑠t
0      (20) 

Because 1
21 |)()(| −

−− ≤− k
kk ss γϕϕ  for ts ≤  and 

,/ Nb γ<  by substituting the above relation in (20) and 

utilizing the boundess of x
f
∂
∂ ,  

))(| tkϕ ⊖ 111
01 |)( −−−

− ≤=∫≤ kkkt
k NbNtdsNt γγγϕ  

In order to validate that x is continuous, it is 
necessary to show that for any given 0>ε  there exists 

0>δ  in such a manner that δ<− || 12 tt  implies 
εϕϕ <− |)()(| 12 tt . At par with the notation convenience, 

we suppose that 21 tt <  . It follows that  

dsssftt
tttt

n
t
tnnnn

nnnn

))(,(lim))()((lim
)(lim)(lim)()(

2

112

1212

ϕϕϕ
ϕϕϕϕ

∫=−=
−=−

∞→∞→

∞→∞→  

There exists N in such a manner that Nxsf ≤|),(| . 
Hence  

δϕϕ NttNNdstt
t

t
≤−=≤− ∫ |||)()(| 1212

2

1

 

henceforth by selecting N/εδ <  it is observed that 
εϕϕ <− |)()(| 12 tt . So )(lim tnn ϕ→∞  exists for all t. 

Now we demonstrate that )(lim tnn ϕ∞→  is continuous. 
Since  

dsssfdsssf
dsssftt

nn
t

nn
t

n
t

nnn

))(lim,())(,(lim
))(,(lim)(lim)(

1010

10

−∞→−∞→

−∞→∞→

∫=∫=
∫==

ϕϕ
ϕϕϕ

where the last step (moving the limit inside the 
function) is at par with the concept that 𝑓 is continuous 
in each variable. Hence it is clear that  

dsssft
t

))(,()(
0

ϕϕ ∫=  

 because all functions are continuous,  

))(,( tsf
dt
d ϕϕ =  

 If there exists another solution )(tφ ,  

dstsftsftt
t

)))(,())(,(()()(
0

φϕφϕ −=− ∫  

Since the two functions are different, there exists 0>ε , 
εφϕ >− |)()(| tt . We define  

|)()(|max
0

ttm
bt

φϕ −=
≤≤

 

 𝑁 is the bound for x
f
∂
∂ . Utilizing the mean value 

theorem,  

NbmmtNdsttNtt
t

≤≤−≤− ∫ |||)()(||)()(|
0

φϕφϕ   
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If we select mNb 2/ε< , it signifies that for all bt < , 
2/|)()(| εφϕ <− tt , that contracts the fact that the least 

difference is 𝜖. So there exists an unique Z-number 
solution.   □ 

 Theorem 2 Assume the following FDE based on Z-
numbers  
𝑑
𝑑𝑑
𝑥 = 𝑓(𝑡, 𝑥)                (21) 

here abJf ∈ , abJ  is the set of linear strongly bounded 

operators, for every operators 𝑓 there exists a function 
such that |𝑓(𝑡,𝑥)| ≤ 𝜏(𝑡)‖𝜈‖𝐺 , ],[ bat∈  and  and 

there exist ,, 10 abff ϕ∈  abϕ  is a set of linear operators 

abJf ∈  from the set  to the set  such that  

],[|),||,|,(|),,(),,(|
],[|),||,|,(|),,(),,(|

01

01

batxxtfxxtfxxtf
batxxtfxxtfxxtf

∈≤+
∈≤+     (22) 

 then (21) has an unique solution. 
 Proof. If 𝑥 is a Z-number solution of (21) and 

)(12
1 aJf ab∈− ,  
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2
1|)|,(),(

2
1

101 xtfxtftf
dt
d
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 contains a unique Z-number solution 𝛽. Moreover as 
abff ϕ∈10 ,   

],[,0)(
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β
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According to (22) and the condition abf ϕ∈1 , from (23) 

we have  
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 The last two inequalities is on account of the 
presumption )(12

1 aJf ab∈−   

],[)(|)(|
],[)(|)(|
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batttx

∈≤
∈≤

β
β                (25) 

According to the (25) and the conditions abff ϕ∈10 , , 

(23) results in  

],[),,,(
],[),,,(

0

0
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dt
d

dt
d
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∈≤

βββ
βββ  

 As 𝑓0 ∈ 𝐽𝑎𝑎(𝑎) , the last inequality with 𝛽(𝑎) = 0 
yields 0)( ≤tβ  and 0)( ≤tβ  for ],[ bat∈ . (24) 

implies 0≡β . Thus based on (25) we have 0≡x .□ 

3. Solving fuzzy differential equation with 
neural networks 

In general, it is difficult to solve the four equations 
(17) or (2). In this paper, a special neural network 
named Bernstein neural network is used to approximate 
the solutions of the FDE (2). 

The Bernstein neural network use the following 
Bernstein polynomial,  

( )( )
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where ( ) ,)!(!
!
iNi

NN
i −=  ( ) ,)!(!

!
jMj

MM
j −=  𝑊𝑖,𝑗 is the Z-

number coefficient. 
This two variable polynomial can be regarded as a 

neural network, which has two inputs ix1  and jx2  and 

one output y,  

jM
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j

N
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==

−−= ∑∑ )1()( 2211,
00
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where ( ),N
ii =λ  ( )M

jj =γ  . 

Because the Bernstein neural network (27) has 
similar forms as (17), the Bernstein neural network (27) 
is used to approximate the solutions of four ODEs in 
(17), see Figure 1. 

 

Fig. 1. Nonlinear system modeling with fuzzy differential 
equation 
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If 𝑥1 and 𝑥2 in (26) are defined as: 𝑥1 is time 
interval 𝑡, 𝑥2 is the 𝛼 -level, the solution of (2) in the 
form of the Bernstein neural network is  
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where 𝑥𝑚(0,𝛼) is the initial condition of the solution 
based on Z-number. 
So the derivative of (27) is  
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The above equations can be regarded as the neural 
network form, see Figure 2. 

 

Fig. 2. Static Bernstein neural network 
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The training errors between (29) and (17) are defined as  
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The standard back-propagation learning algorithm is 
utilized to update the weights with the above training 
errors 
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 where 𝜂1  and 𝜂2 are positive learning rates. 
The momentum terms, ( )1, −∆ kW jiγ  and 

( )1, −∆ kW jiγ  can be added to stabilized the training 

process. The above Bernstein neural network can be 
converted to a recurrent (dynamic) form, see Figure 3. 
The dynamic Bernstein neural network is  
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Obviously this dynamic network has the form of  
)()(),( tQxtPxtf +=  

and it is closed to (2). 
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The training algorithm is similar as (31), only the 
training errors are changed as 
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Fig. 3. Dynamic Bernstein neural network 

4. Applications 

In this section, several real applications are used to 
show how to use the Bernstein neural networks to 
approximate the solutions of the FDEs. These examples 
can be expressed by FDEs. 

 Example 1 The vibration mass system shown in 
Figure 4 can be modeled by the ODE  
𝑑
𝑑𝑑
𝑥(𝑡) = 𝑘

𝑚
𝑥(𝑡)                (34) 

where the spring constant is 𝑘 = 1. The mass 𝑚 is 
changeable in [(0.75,1.125), 𝑝(0.7,0.8,1)], so the 
position state )(tx  has some uncertainties, the ODE 
(34) can be formed into a FDE based on Z-number. It 
has the same form as (34), only )(tx  becomes a Z-
number variable. If the initial position is 

)],1,9.0,8.0(),125.0125.1,25.075.0[()0( px αα −+= [ ],1,0∈α
then the exact solutions of the FDE (34) is [48]  
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(35) 
where ].1,0[∈t  Now the static Bernstein neural network 
(28) is used, noted as SNN to approximate the Z-
number solution )]1,94.0,8.0()),,(),,([( ptxtx mm αα  (35) 
where  











−−∑∑+
−=

−−∑∑+
+=

−−
==

−−
==

jM
jj

iN
iijiji

M
j

N
i

m

jM
jj

iN
iijiji

M
j

N
i

m

tTtWt
tx

tTtWt
tx

)1()(
)125.0125.1(),(

)1()(
)25.075.0(),(

,00

,00

ααγλ
αα

ααγλ
αα

 

 

Fig. 4. Vibration mass 

Also dynamic Bernstein neural network (32) is used, 
noted as DNN to approximate the solutions. The 
learning rates are 𝜂 = 0.01, 𝛾 = 0.01. To compare the 
results, two other popular methods are used namely 
Max-Min Euler method and Average Euler method [28]. 
The comparison results are shown in Table 1 and Table 

Table 1. Solutions of different methods based on Z-numbers. 
𝛼 Exact solution SNN DNN 

0 [(2.1858,3.2787),p(0.8,0.87,0.95)] [(2.2967,3.4240),p(0.7,0.81,0.85)] [(2.2250,3.3883),p(0.71,0.85,0.87)] 
0.2 [(2.2924,3.1521),p(0.81,0.9,1)] [(2.3545,3.2570),p(0.7,0.82,0.9)] [(2.3504,3.2467),p(0.75,0.83,0.9)] 
0.6 [(2.5790,3.0088),p(0.81,0.9,1)] [(2.6759,3.1461),p(0.7,0.8,0.87)] [(2.6097,3.0872),p(0.75,0.83,0.9)] 
1 [(2.9144,2.9144),p(0.8,0.87,0.95)] [(2.9667,2.9667),p(0.7,0.8,0.87)] [(2.9532,2.9532),p(0.71,0.85,0.87)] 

𝛼 Exact solution Max-Min Euler Average Euler 
0 [(2.1858,3.2787),p(0.8,0.87,0.95)] [(2.4847,3.4771),p(0.7,0.82,0.85)] [(2.9921,3.4921),p(0.65,0.8,0.85)] 

0.2 [(2.2924,3.1521),p(0.81,0.9,1)] [(2.6100,3.5888),p(0.72,0.8,0.87)] [(2.8137,3.2303),p(0.6,0.7,0.75)] 
0.6 [(2.5790,3.0088),p(0.81,0.9,1)] [(2.7137,3.1660),p(0.6,0.8,0.87)] [(2.9565,3.1372),p(0.6,0.7,0.8)] 
1 [(2.9144,2.9144),p(0.8,0.87,0.95)] [(3.0152,3.0152),p(0.6,0.8,0.87)] [(3.1249,3.1249),p(0.6,0.7,0.8)] 
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2. Corresponding solution plots are shown in Figure 5. 
We can see that both the Bernstein neural networks 
SNN and DNN (our methods), Max-Min Euler method 
and Average Euler method can approximate the 
solutions of the FDEs. The approximation errors of the 
DNN is much smaller than the other methods.  
 

 

Fig. 5. Comparison plots of SNN, DNN, Max-Min Euler, 
Average Euler and the exact solution based on Z -numbers 

The following relation is used to transfer the Z-
numbers to fuzzy numbers, 

𝛼 =
∫ 𝑥𝜋𝑃�(𝑥)𝑑𝑥
∫𝜋𝑃�(𝑥)𝑑𝑥

 

Consider )]95.0,87.0,8.0(),2787.3,1858.2[(),( ppAZ == ,  

then ]87.0;2787.3,1858.2[=αZ  and so 

].2787.387.0,1858.287.0[=′Z  The comparison results of 
different methods for the fuzzy numbers are shown in 
Table 3. 

The Z-numbers increase degree of reliability of the 
information. The crucial factor is that incorporated 
information is not only the most generalized 
representation of information uncomplicated real world 
but also incorporated with greater narrative power 
extracted from human cognition perspective compared 
with fuzzy number. The comparison between the Z-
number 𝑍 = [(2.1858,3.2787), 𝑝(0.8,0.87,0.95)] and 
fuzzy number [2.0387,3.0581] is shown in Figure 6. It 
can be seen that the Z-number incorporates with various 
information and the solution of the Z-number is more 
accurate. The membership function for the restriction in 
the Z-number is 𝜇𝐴𝑧 = [2.1858,3.2787]. It can be in 
probability form. 

 Example 2 The heat treatment system in welding 
can be modeled as [49]:  
𝑑
𝑑𝑑
𝑥(𝑡) = 3𝐴𝑥2(𝑡)               (36) 

 where transfer area A  is uncertainty as 
)],95.0,87.0,8.0(),3,1[( pA αα −+=  ].1,0[∈α  So 

(ex3) is a FDE based on Z-number. If the initial 
condition is 

)],1,92.0,8.0(),5.012.0,5.0[()0( px +−= αα  the 
static Bernstein neural network (28) has the form of  

Table 3. Solutions of different methods based on fuzzy numbers  
α Exact solution SNN DNN Max-Min Euler Average Euler 

0 [2.0387,3.0581] [1.9703,3.0043] [1.9901,3.0305] [1.9453,2.5980] [2.2441,2.6191] 
0.1 [2.1067,3.0241] [2.0302,2.9415] [2.0591,2.9752] [2.0102,2.8855] [2.2791,2.6166] 
0.2 [2.1746,2.9901] [2.1059,2.9131] [2.1283,2.9399] [2.0750,2.8531] [2.3140,2.6140] 
0.3 [2.2426,2.9561] [2.1618,2.8707] [2.1901,2.8931] [2.1398,2.8207] [2.3490,2.6115] 
0.4 [2.3105,2.9222] [2.2307,2.8453] [2.2601,2.8799] [2.2047,2.7883] [2.3840,2.6090] 
0.5 [2.3785,2.8882] [2.2984,2.8088] [2.3288,2.8337] [2.2695,2.7559] [2.4189,2.6064] 
0.6 [2.4465,2.8542] [2.3631,2.7784] [2.3904,2.7955] [2.3344,2.7234] [2.4539,2.6039] 
0.7 [2.5144,2.8202] [2.4292,2.7449] [2.4555,2.7691] [2.3992,2.6910] [2.4888,2.6013] 
0.8 [2.5824,2.7862] [2.4895,2.7067] [2.5101,2.7302] [2.4641,2.6586] [2.5238,2.5988] 
0.9 [2.6503,2.7523] [2.5564,2.6769] [2.5821,2.7001] [2.5289,2.6262] [2.5588,2.5963] 
1 [2.7183,2.7183] [2.6199,2.6399] [2.6414,2.6614] [2.5937,2.5937] [2.5937,2.5937] 

 

Table 2. Approximation errors based on Z-numbers 
 SNN DNN Max-Min Euler Average Euler 
0 [(0.0684,0.1251),p(0.7,0.8,0.85)] [(0.0231,0.0671),p(0.7,0.85,0.87)] [(0.1064,0.1596),p(0.7,0.8,0.85)] [(0.2404,0.5138),p(0.6,0.8,0.85)] 
0.2 [(0.0735,0.1192),p(0.7,0.8,0.9)] [(0.0266,0.0675),p(0.75,0.8,0.9)] [(0.1127,0.1551),p(0.7,0.8,0.87)] [(0.1588,0.4286),p(0.7,0.8,0.85)] 
0.6 [(0.0855,0.1095),p(0.8,0.87,0.95)] [(0.0339,0.0689),p(0.8,0.9,1)] [(0.1253,0.1462),p(0.7,0.85,0.9)] [(0.0082,0.2798),p(0.7,0.81,0.9)] 
0.8 [(0.0833,0.0939),p(0.8,0.91,1)] [(0.0345,0.0526),p(0.8,0.94,1)] [(0.1247,0.1345),p(0.8,0.9,1)] [(0.0628,0.2009),p(0.75,0.9,1)] 
1 [(0.1029,0.1029),p(0.7,0.8,0.9)] [(0.0572,0.0572),p(0.8,0.85,0.95)] [(0.1410,0.1410),p(0.7,0.8,0.87)] [(0.1410,0.1410),p(0.7,0.8,0.87)] 
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 where the approximate Z-number solution is termed as 
)]1,9.0,8.0()),,(),,([( ptxtx mm αα . With the learning rates 

𝜂 = 0.002 and 𝛾 = 0.002  the approximation results for 
Z-numbers are shown in Table 4. The results of 
Bernstein neural networks approximation for the fuzzy 
numbers are shown in Table 5.  

 

Fig. 6. Z-number and fuzzy number 

Table 4. Bernstein neural networks approximate the Z-
numbers 

𝛼 SNN DNN 
0 [(0.0582,0.0859),p(0.7,0.8,0.85)] [(0.0250,0.0425),p(0.7,0.82,0.9)] 

0.1 [(0.0449,0.0696),p(0.7,0.8,0.9)] [(0.0224,0.0399),p(0.75,0.82,0.9)] 
0.2 [(0.0419,0.0619),p(0.8,0.92,1)] [(0.0207,0.0394),p(0.8,0.94,1)] 
0.3 [(0.0250,0.0348),p(0.7,0.81,0.9)] [(0.0226,0.0344),p(0.8,0.85,0.96)] 
0.4 [(0.0487,0.0689),p(0.7,0.8,0.88)] [(0.0271,0.0510),p(0.75,0.82,0.9)] 
0.5 [(0.0534,0.0665),p(0.8,0.9,1)] [(0.0160,0.0271),p(0.81,0.92,1)] 
0.6 [(0.0494,0.0765),p(0.8,0.9,1)] [(0.0201,0.0413),p(0.81,0.92,1)] 
0.7 [(0.0630,0.0859),p(0.75,0.82,0.9)] [(0.0303,0.0476),p(0.82,0.9,1)] 
0.8 [(0.0393,0.0536),p(0.8,0.92,1)] [(0.0164,0.0379),p(0.82,0.94,1)] 
0.9 [(0.0422,0.0669),p(0.8,0.9,1)] [(0.0212,0.0430),p(0.8,0.94,1)] 
1 [(0.0443,0.0443),p(0.7,0.8,0.88)] [(0.0186,0.0186),p(0.7,0.82,0.9)] 

 

 

Example 3 A generalized model of a tank system is 
displayed in Figure 7. Assume 𝐼 = 𝑡 + 1 be inflow 
disturbances of the tank that will generate vibration in 
liquid level x  , here 𝑅 = 1 will be the flow obstruction 
that can be curbed using the valve and 𝐴 = 1 is 
considered to be cross section of the mentioned tank. 
The expression in relation to the liquid level considering 
the tank can be described as [50]:  

A
Itx

AR
tx

dt
d

+−= )(1)(                (37) 

 

Fig. 7. Liquid tank system 

If the initial condition is 
)],9.0,82.0,75.0(),01.001.1,04.096.0[()0( px αα −+=

 the static Bernstein neural network (28) has the form of  
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where 𝑡 ∈ [0,1] and the approximate Z-number solution 
is termed as )]95.0,81.0,75.0()),,(),,([( ptxtx mm αα . Also 
dynamic Bernstein neural network (38) is used to 
approximate the solutions. To compare the results, the 
other generalization of neural network method [31] is 
used. The comparison results for Z-numbers are shown 
in Table 6. The specifications quoted here are 

001.0=η  and 𝛾 = 0.001. Corresponding error plots 
are shown in Figure 8. These errors are the differences 
of the exact and the approximation solutions, for three 
different methods: SNN, DNN and NN Z-numbers. The 
results of Bernstein neural networks approximation for 
the fuzzy numbers are shown in Table 7. DNN is more 
accurate than the SNN and the other generalization of 
neural network method.  

 

Fig. 8. The lower and upper bounds of absolute errors. 
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Table 5. Bernstein neural networks approximate the fuzzy 
numbers 

𝛼 SNN DNN 
0 [0.0511,0.0754] [0.0224,0.0381] 

0.1 [0.0402,0.0623] [0.0203,0.0362] 
0.2 [0.0398,0.0588] [0.0197,0.0374] 
0.3 [0.0224,0.0312] [0.0211,0.0321] 
0.4 [0.0433,0.0613] [0.0246,0.0462] 
0.5 [0.0507,0.0631] [0.0152,0.0258] 
0.6 [0.0469,0.0726] [0.0191,0.0392] 
0.7 [0.0571,0.0778] [0.0288,0.0452] 
0.8 [0.0373,0.0509] [0.0157,0.0362] 
0.9 [0.0401,0.0635] [0.0202,0.0408] 
1 [0.0394,0.0394] [0.0167,0.0167] 

 

5. Conclusions 

In this paper, two types of Bernstein neural 
networks are used namely static and dynamic models to 
approximate the solutions of FDEs on the basis of Z-
numbers. Initially the FDE is transformed into four 
ODEs with Hukuhara differentiability. Then neural 
models are constructed with the structure of ODEs. 
With modified back propagation method for Z-number 
variables, the neural networks are trained. Some real 
examples are employed to show the effectiveness of the 
proposed approximation methods with the Bernstein 
neural networks. The future works are the application of 
these mentioned methodologies for fuzzy partial 
differential equations on the basis of Z-numbers. 
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