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Abstract. Wastewater treatment is a complicated dynamic process affected by microbial, chemical 
and physical factors. These variables are always uncertain. Due to the complex biological reaction 
mechanisms, the highly time-varying and multivariable aspects, the traditional analysis method in the 
description and simulation of complex reaction process and mechanism of wastewater treatment 
encountered challenges. However, we can use uncertainty theory to mine the rules behind the data 
and find the relationship between them. The Bayesian network is a powerful knowledge 
representation tool that deals explicitly with uncertainty. This paper employed the Bayesian network 
to make active exploration on the modeling of wastewater treatment system. An example is given to 
illustrate how to build a BN based sewage treatment system model. 

Introduction 
Wastewater treatment is a complex process, the effectiveness of which is affected by microbial, 
physical, chemical and many other factors [1]. These factors are often nonlinear and uncertainty. 
These reasons make the real-time prediction and diagnosis analysis in wastewater treatment system is 
still a big problem. The traditional analysis method in the description and simulation of complex 
reaction process and mechanism of wastewater treatment encountered challenges. Moreover, the 
traditional methods are powerless for the nonlinearity and uncertainty factors in wastewater 
treatment. 

Bayesian networks (BNs) are an alternative technique to conventional modelling for 
investigating multi-factor problems [2, 3]. BNs characterise uncertainties in knowledge and use 
probability theories to manage these uncertainties by explicitly representing the conditional 
probability dependencies between variables [4, 5]. Given their solid theoretical foundation, flexible 
inference capability and convenient decision support mechanism, BNs have a great potential in the 
modeling of WWTSs [1]. Scholars have attempted to diagnose WWTSs using BN tools [6, 7]. In the 
present work, we proposes a method for modelling a WWTS based on MSBR via BNs. When the BN 
based model is established, the inference mechanism of BN can be used to predict, diagnose and 
optimize the wastewater treatment system. 

Characteristics of the wastewater treatment system based MSBR  
In this work, a six-pool MSBR was employed. The process flows of the MSBR are shown in Fig. 

1. 
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The MSBR comprises two functional 
areas, the anaerobic-anoxic-oxic and SBR 
functional areas. Sewage initially enters the 
anoxic zone and then enters the anaerobic 
zone before eventually entering the aerobic 
aeration zone. During this process, organic 
matter is decomposed by 
phosphate-accumulating organisms and 
denitrifying bacteria in the anaerobic and 
anoxic zones, thereby significantly 
decreasing the COD concentration. 
Simultaneously, nitrogen and phosphorus 
are partially removed. After the 
anaerobic-anoxic-oxic reaction process, 
the sewage alternatively enters two SBR 
zones through an automatic control device. 
Within the SBRs, alternative 
anaerobic–aerobic treatments further 
enhance the effects of nitrogen and 
phosphorus removal[8].  

   Fig. 1 Process flow of an MSBR[1].         

BN model building methods. 
The methods for building a BN model could be divided into three types : Expert experience 

method, Parameter learning method and Structure learning method[2, 3, 9].Building the BN model 
using the first method is unrealistic because of the complexity of the WWTS. We usually choose the 
second or third method to build BN models based on the richness of the underlying data.  

In this study, the second method mentioned above was used to construct the BN for two reasons. 
First, the structure of a BN reveals the qualitative relationships between variables [10], and previous 
studies [8] could be used to develop the initial BN structure for MSBR. Second, the BN parameters 
reveal the quantitative relationships between variables. In addition, quantitative relationships could 
not be reliably obtained through expert opinion because only a few studies have quantitatively 
investigated MSBR systems. Consequently, data mining was employed to derive the quantitative 
relationships used in the BN. 

Conceptual BN of MSBR 
Selection of BN node .Theoretically, all factors affecting MSBR should be selected as variables 

in the BN. However, an overly complex model would encounter many problems, such as difficulty in 
collecting experimental data. Thus, the selection of variables for describing MSBR requires a 
compromise between model objectivity and operability. On the one hand, the selected variables must 
reflect the characteristics of the core processes in MSBR. On the other hand, those variables must be 
measurable and controllable by a treatment operator.  

Our BN variables for MSBR were selected based on the reasons mentioned above. As shown in 
Table 1, the variables were categorised into four groups, namely, variables related to the (1) influent 
loads, (2) control parameters, (3) effluent concentration and (4) environment.  

Network structure development.The network was developed on knowledge derived from the 
literature (Yang, 2001) and elicited from experts (Prof. Hai Zhen Yang, the inventor of MSBR; Prof. 
Guo Wei Gu) in MSBR technology. Qualitative relationships among the selected variables were 
established upon consultation with the aforementioned MSBR experts. Firstly, the conceptual BN 
models for nitrogen, phosphorus and COD removal were established. Afterwards, the integrated BN 
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model of the MSBR system was finally obtained by incorporating the three models. 
Conceptual BN model for nitrogen 

removal. The total nitrogen concentration of 
influent ( inTN ) directly affects the total 
nitrogen concentration of the effluent ( outTN ). 
Thus, the outTN and inTN  are connected by a 
direct arc, which indicates the qualitative 
influence relationship between these two 
variables. Biological nitrogen removal 
involves ammonification, nitrification and 
denitrification. Ammonification can be 
carried out under aerobic or anoxic 
conditions and has a rapid reaction rate, 
which is not the key control factor in 
wastewater nitrogen removal. The major 
factors affecting nitrification include 
temperature, dissolved oxygen (DO) level, 
pH and sludge age, and the major factors 
affecting denitrification are temperature, pH 
and DO level. Therefore, the organic 
concentration ( in

COD ), temperature 
(WT ),DO , pH, sludge age (SRT ) and out

TN  
are connected by a direct arc. The major 
control parameters of the MSBR system are 
hydraulic retention time (HRT ), reflux ratio 
of mixture (R ), cycle period of SBR ( sb

C ), 
anoxic mixing time ( am

T ), aerobic aeration 
time ( aa

T ) and static settling time ( se
T ). These factors and out

TN  are also connected by a direct arc. 
The removal of nitrogen, phosphorus and organic matter is affected by pH, whereas the influent loads 
of inCOD , inTP  and inTN  can affect pH. Therefore, inCOD , inTP , inTN  and pH are connected by a direct 
arc. As shown in Figure 2, the preliminary BN model for nitrogen removal was developed on the 
basis of the above analysis. 

 
During the experiment, municipal wastewater was generally neutral; therefore, its pH can be 

considered constant. To play the system performance, the DO of each pool was controlled within a 
certain range without significant changes. Therefore, DO  can also be considered constant. Q  was 
approximately 250 mP

3
P /day, and 'R  was fixed. Thus, both of them can also be considered constants. 

HRT is affected by Q  and R , but the actualHRT  is difficult to observe and measure. Therefore, 
HRT was considered an intermediate variable. 

On the basis of the above analysis, the 
preliminary BN model in Figure2 should be 
modified. In model modification, the constants 
are removed from the conceptual model. 
Intermediate variables are represented by 
dotted lines to indicate the qualitative 
relationship between them; however, these 
variables are not involved in the parameter 
learning and inference calculation. The 
amended BN model for nitrogen removal is 
shown in Figure 3. 

Table1. Categories of MSBR variables  

Variable 
Symbol 

Type Name 

Related to 
influent loads  

Influent flow Q 
Influent COD concentration inCOD  
Influent total phosphorus concentration inTP  
Influent total nitrogen concentration inTN  

Related to 
control 
parameters 

Cycle period of SBR sbC  
Hydraulic retention time HRT  
Sediment retention time SRT  
Reflux ratio of mixed liquor R 

Sludge return ratio 'R  
Anoxic mixing time amT  
Aerobic aeration time aaT  
Static settling time 

se
T  

Related to 
effluent 
concentration 

Effluent COD concentration outCOD  
Effluent total phosphorus concentration outTP  
Effluent total nitrogen concentration outTN  

Environmental 
variables 

pH pH  
Dissolved oxygen level DO  
Water temperature  T  
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Conceptual BN model for phosphorus 
removal. For phosphorus removal, the related 
factors include sludge age, DO level, organic 
matter and temperature. Same as the nitrogen 
removal BN, we built a conceptual BN model 
for phosphorus removal, given in Figure 4. 

The model shown in Figure 4 was also 
modified to obtain a BN model for phosphorus 
removal, as shown in Figure 5: 

 

 
Conceptual BN model for COD removal. The factors influencing COD removal include COD 

loading, sludge age and DO level. Similarly, a preliminary BN model for phosphorus removal was 
developed, as shown in Figure 6. 

Similarly, the model shown in Figure 6 was modified to obtain a BN model for COD removal, as 
shown in Figure 7: 

 
The Integrated BN model for MSBR. Figures 3, 5 and 7 show three models and describe the 

MSBR system properties from different aspects. One or more BN models can be used to analyse the 
MSBR system. However, the function of a MSBR system is not to perform nitrogen removal, 
phosphorus removal, or COD removal alone. Thus, using a decomposition model for analysis is not 
comprehensive and objective. For example, the monitoring value of outTP  was abnormal, and we 
employed the decomposition model of phosphorus removal for diagnosis. The diagnosis result 
indicated that the long aaT  caused the abnormal outTP . Therefore, we correspondingly adjusted the aaT , 
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after which outTP  normalised; however, this adjustment led to outTN  becoming abnormal. Therefore, 
an integrated model is needed to carry out diagnostic analysis. 

Combining the models in Figures 3, 5 and 7 produced an integrated BN model for removing 
nitrogen, phosphorus and COD, as shown in Figure 
8. 

Model parameterisation . The choice of 
number of states is an important step in developing 
a BN because it often affects the model sensitivity. 
Choosing the number of states requires a 
compromise between model simplicity and 
accuracy [11]. Pradhan suggested that two or three 
states are often sufficient for a BN to analyse a 
system[12]. The state definitions of MSBR 
variables are shown in Table 2. 

 
Table 2. State definition of MSBR variables 

Variable Symbol Unit State definition  Type Name 

Related to 
influent loads  

   Low Mid High 
≤ 200 200－400 ≥ 400 Influent COD concentration inCOD  mg/L 

      Influent TP concentration inTP  mg/L ≤ 3 3－6 ≥ 6 
Influent TN concentration inTN  mg/L ≤ 35 35－70 ≥ 70 

Water temperature  T  °C ≤ 10 10－20 ≥ 20 
       
    Short Mid  Long 

Related to 
control 

parameters 

Cycle period of SBR sbC  h ≤ 5 —a ≥ 5 
Anoxic mixing time amT  min ≤ 35 35－45 ≥ 45 

Aerobic aeration time aaT  min ≤ 60 60－85 ≥ 85 
Reflux ratio of mixed liquor R  ≤ 1.5  ≥ 1.5 

       
    Normal  Abnormal 

Related to 
effluent 

concentration 

Effluent COD concentration outCOD  mg/L ≤ 100 — ≥ 100 
Effluent TP concentration outTP  mg/L ≤ 1 — ≥ 1 
Effluent TN concentration outTN  mg/L ≤ 35 — ≥ 35 

aA dash (—) indicates that the value is unspecified for this variable. Only short and long states of this variable were specified. 

Our research group carried out numerous studies on a small pilot of MSBR to obtain the control 
range of the operating parameters. To understand further the characteristics of the MSBR system, we 
conducted a pilot study based on laboratory experiments. In the pilot study, the sewage was taken 
from Shanghai Confluence Pretreatment Wastewater Plant Project from a grass town in Pudong, 
Shanghai; half of inoculated sludge was obtained from the excess sludge of secondary sedimentation 
tanks in the Eastern Shanghai WWTP, and the other half of inoculated sludge was obtained from the 
dewatering sludge of primary settling tanks in the Shanghai Cao Yang WWTP. The influent flow rate 
was approximately 250 mP

3
P/day, and pH was controlled between 6.5 and 7.5.  

Several working conditions were tested according to the operation mode, load condition and 
environmental condition. We have collected a large number of data for each condition, and more than 
2000 packets of data on MSBR monitoring variables were collected. In consideration of the limited 
space, only a part of the test data is shown in Table 3: 
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Table 3 Partial test data 

No. 

Variable related to control parameters  Variable related to influent loads 
(mg/L)  Variable related to effluent 

concentration(mg/L) 

WT (°C) R  sbC (h) amT (min) aaT (min)  inCOD  inTN  inTP  
 

 outCOD  outTN  outTP  

1 28 2 4 50 40 158.5 20.8 2.16 46.1 8.3 0.60 

2 24 2 6 50 90 129.0 20.6 2.29 40.9 4.4 0.70 

3 18 1 6 50 90 140.0 30.5 3.02 47.5 20.7 0.95 

4 14 1 6 40 85 156.0 29.1 2.31 51.1 22.8 0.71 

5 14 2 6 40 85 230.0 25.0 4.15 57.8 18.0 1.63 

6 28 1 4 30 60 496.0 72.7 8.80 124.0 60.6 4.19 

7 24 2 4 30 60 359.9 51.3 7.54 76.6 34.1 3.42 

8 10 1 7 50 80 157.3 38.6 2.07 68.4 27.9 0.48 

9 8 1 8 50 90 214.5 29.9 3.06 82.2 31.4 1.27 

10 12 1 8 55 90 178.8 99.3 1.89 67.6 46.7 0.78 

…            

The network parameters of the nodes were computed based on training data from the pilot test. 
Figure 9 shows that inCOD , inTP , inTN , sbC , amT , aaT  and T  are the root nodes. Hence, their prior 
probabilities are also the marginal probabilities. The marginal and joint probabilities are shown in 
Table 4. The conditional probabilities are not listed because of space constraints. 

Conclusion 
Wastewater treatment is a complicated 

dynamic process affected by microbial, chemical 
and physical factors. Due to the complex 
biological reaction mechanisms, the highly 
time-varying and multivariable aspects, modeling  
of wastewater treatment system are still difficult 
in practice. In this research, we use uncertainty 
theory to mine the rules behind the data and find 
the relationship between them. This paper 
employed the Bayesian network to make active 
exploration on the modeling of wastewater 
treatment system. An example is given to 
illustrate how to build a BN based sewage 
treatment system model. The established model 
can provide a strong support for the prediction, 
diagnosis and optimization analysis of wastewater 
treatment system. 

  
 
 

Table 4 Marginal and joint probabilities  
variables Marginal and joint probabilities 

 High Mid Low 

inCOD  7.89 65.79 26.32 

inTN  39.47 28.95 31.58 

    

 Long Mid Short 

WT  39.47 39.49 21.04 

amT  65.79 20.09 14.12 

aaT  42.11 31.58 26.31 

sbC  68.42  31.58 

R  50.00  50.00 

    

 Abnormal  Normal 

out
COD  26.73  73.27 

out
TN  28.71  71.29 

out
TP  29.70  70.30 
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