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Abstract: A multi-criteria score-based method has been developed to assess General Circulation 
Models (GCMs) skill in the Yellow-Huai-Hai region for 1970-2005. The rank score of these criteria 
are applying to comprehensively assess the temporal and spatial performance of precipitation and 
temperature of 18 GCMs in the study region. The results indicate that: GCMs usually simulate 
temperature better than rainfall. The temporal and spatial distribution of simulated temperature 
performed well when compared with the observed data. Compared with temperature, the spatial 
distribution of simulated precipitation performed poor. All the GCMs underestimate the temperature 
and overestimate the precipitation in the study region. The method developed in this study could 
easily be extended to different study regions and results can be used for better informed regional 
climate change impact analysis. 

Introduction 
General circulation models (GCMs) are the most common tools for projecting the future climate 
changes. Errors and uncertainties in GCMs metadata afflict the entire intensity spectrum, causing 
especially the inability to regenerate the observed meteorological events. GCMs simulation is often 
characterized by biases and uncertainties that limit their direct application[1]. Uncertainty is the 
major shortfall of GCMs for assessing regional impacts of change. The different forcing scenarios, 
different GCMs and different sub-grid scale forcing and processes caused the uncertainties which 
limit the application of GCMs[2]. Despite continuous works to improve the GCMs’ simulation 
capacity, the application of assessment methods is essential for the impact studies of climate 
change[3]. 
To reduce the uncertainties in the GCMs application, the GCMs have been assessed in many 
researches [4-6]. The assessment places emphasis on various aspects of GCMs according to its 
different application. For example, the long-term climate change analysis is the main work in a 
study, the assessment of GCMs performance before its application is focused on the temporal and 
spatial distribution simulations. However, the drawback of the assessment which use a single 
criterion is that the assessment could not general describe the skill of GCMs[4]. More criteria in the 
assessment process, we could have a more comprehensive understanding of the advantage and 
disadvantage for the GCMs. 
In existing studies, there is still no an assessment method of GCMs has been accepted by all 
researchers. How to assess the skill of GCMs before using them is becoming an interesting question. 
In this paper, a multi-criteria score-based method has been analyzed and all the performance of 
GCMs has been quantitatively calculated and examined. We will study this method with the aim to 
understand and capture the possible characteristics of future climate change. 

Study Region and Data Set 
The Yellow-Huai-Hai region is a prime agricultural and industrial region in China. It therefore plays 
an important role in social and economic development for the country. All these consequences of 
climate change will seriously restrain economic growth[7, 8]. 
All the GCMs data come from the Fifth Phase of the Coupled Model Intercomparison Project 
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(CMIP5). This data set is the most important tool for analyzing future climate change[9]. To simulate 
future climate change, 18 global general circulation models (GCMs) of CMIP5 are considered in 
this paper (Table 2-4). Since GCM horizontal resolution varies, the GCM outputs were interpolated 
to a uniform resolution of 2.5º×2.5º. The grid cells distribution over the study region shows in 
Figure 1. The precipitation data with good quality and continuous records for the period 1970–2005 
are obtained from 128 meteorological stations (Figure 1). To assessment the GCMs skill well, the 
daily data which observed by the meteorological stations were accumulated to monthly data and 
interpolated by the inverse distance weighted method to the 2.5º×2.5ºcells. 

Methods 
In this study, a multi- criteria score-based method has been developed to assess the skill of GCMs 
data in the regional scale. The criteria including mean annual data, standard deviation, annual cycle 
of the climate, normalized root mean square error, spatial distribution, climate change trend, 
Empirical Orthogonal Function and Probability Density Function are listed in Table 1. 
In the assessment, a rank score value (RS) of 0-9, which has been used to assess each individual 
assessment criterion, is written in the following form: 
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where xi is the relative error between the ith GCM result and observation or the related statistical 
value for the ith GCM. As the relative error, the larger xi means the larger rank score in the GCMs 
performance assessment. And then total rank score of each GCM’s is summated by the rank score of 
all criteria. Some different criteria which is belong to same statistic character, such as 
Mann-Kendall test Z and Trend magnitude β for trend and its magnitude analysis, EOF1 and EOF2 
for Empirical orthogonal function (EOF) analysis, and the BS and Sscore of PDF (will described 
later), are weighted 0.5 each in this summation (Table 1) while the other criteria have a 1.0 weight. 
Relative error (RE) was used to quantify the similarity between simulated and observed values for 
long-term monthly mean and standard deviation. The skills of bias-corrected time series of water 
vapor budget in GCMs are evaluated by the NRMSE (normalized root-mean square error)[10, 11]. The 
correlation coefficient of annual cycle was calculated between observed and modeled long-term 
monthly mean values. Mann-Kendall test and trend magnitude method were applied to detect the 
long-term monotonic annual trends and quantify their magnitudes[12]. The trend magnitude β  of 
sen’s slope, is the median over all possible combinations of pairs for the whole data set[7, 12, 13]. The 
relative error was used to assess how close the Z statistic and β  magnitude of each GCM are to 
the observed values. 
Empirical orthogonal function (EOF) analysis in this study was used to compare the spatial 
distribution difference of modeled climate variable and the observations[14, 15]. Because the first two 
leading modes of each EOF is accounting for the majority of the total variance, they have been used 
in this study to compare the observation and modeling data. 
The Brier score (BS) and Significance score (Sscore) are used for assess the monthly climate 
variables probability density functions of GCMs. 
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where Pmi and Poi are the simulated and observed ith probability values of each bin and n (set as 16) 
is the number of bins. In this study, BS is the mean squared error measure for probability 
forecasts[16, 17], and the Sscore is the calculated cumulative minimum value of observed and 
simulated distribution for each bin which could quantifying the overlap between the observed and 
simulated data[18, 19]. Therefore, the BS of GCMs is smaller and the Sscore is bigger, the 
performance of GCMs is better. 
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Results 

1) The assessments of temperature 
Table 2 is the assessment results of temperature performance in the Yellow-Huai-Hai region. It can 
be clearly seen that the mean temperature in the historic period in the study region is 8.49℃, while it 
is 3.62-8.09℃ of GCMs in the same period. Most GCMs underestimate the mean temperature and 
the standard deviation. The smaller NRMSE results indicate the better simulation for the set of data. 
For the monthly mean temperature, the best NRMSE for the GCMs is miroc-esm (0.22), while the 
NRMSE result of ipsl-cm5b-lr has the largest value in these GCMs. The simulated monthly 
distribution in annual cycle for each GCMs is quite similar with the observed data, which could be 
seen from the correlation index (all of them is large than 0.995). As a consequence, the correlation 
results of monthly distribution in annual cycle have been rounded to 1. The spatial temperature 
distribution correlation coefficients between each GCMs and observations are also larger than 0.9, 
which means that all GCMs could well describe the spatial distribution of mean temperature in the 
Yellow-Huai-Hai region.  
The temperature in the Yellow-Huai-Hai region is grown in the last 40 years. The Z value in 
Mann-Kendall test of observed temperature is 4.81 which means that the observed mean 
temperature is significant increased in the 0.05 significance level. However, most GCMs 
underestimate the trend of temperature change in this region. The trend magnitude β  in sen’s 
slope shows the similar results.  
The results of analyzing the spatial temperature by using the EOF show that the first and the second 
vector monthly temperature EOFs of observations account for 98.9% and 0.51% of the total 
variance (Table 2), respectively. Actually, the result provides that the GCMs well perform the 
physical process of temperature variability. Empirical cumulative probability distribution (Figure 2) 
shows that the empirical cumulative probability distributions of monthly mean temperature which 
simulated by most GCMs are quite close to the observation (except the inm-cm4 and ipsl-cm5b-lr). 
The results of BS and Sscore are consistent with the Figure 2 that the relatively poorer 
performances of the inm-cm4 and ipsl-cm5b-lr models are confirmed by the larger BS and Sscore. 
The skill of GCMs has been evaluated and the final score of each model has been calculated. The 
ccsm4 model gets the highest score while the inm-cm4 gets the lowest score. Figure 3 describes the 
difference of annual temperature change between the observation and the best and worst skill 
models in the Yello-Huai-Hai region. We can see clearly that even though the ccsm4 model has 
underestimates the mean temperature, the model simulates a similar change trend with observations. 
In contrast, inm-cm4 model has vastly underestimates and simulates a wrong temperature change 
with the observations. 

2) The assessments of precipitation 
Table 3 is the assessment results of the skill of GCMs for precipitation. Compare with the 
temperature, the GCMs have a poor performance for the precipitation. Most GCMs overestimate the 
values of precipitation and the standard deviations. Especially the precipitation of bun-esm model is 
1256mm, which is twice more than the observations. The value of NRMSE for precipitation is 
much larger than it for temperature. The correlation coefficient of monthly precipitation in annual 
cycle of GCMs is less than it for temperature but most value of the correlation coefficients is still 
more than 0.9. The spatial correlation coefficient of GCMs only between 0.45-0.82, which means 
the simulation of GCMs in spatial precipitation distribution is much worse than it in temperature. 
By using Mann-Kendall test, the precipitation of GCMs shows different change trends which 
indicate that the simulated precipitation of GCMs is much uncertainty than temperature. Because 
the physical mechanism of precipitation occurrence is mainly influenced by the large-scale 
circulation factors, the uniform spatial distribution of simulated precipitation indicates that it could 
not explain the influence of circulation factors well.  
The empirical cumulative probability distribution of GCMs monthly precipitation has compared 
with the observation in Figure 4. Most GCMs overestimate the high precipitation in the probability 
distribution, which is consistent with the result of annual precipitation analysis. The result of higher 

746

Advances in Engineering Research (AER), volume 143



BS and lower Sscore also indicate that the temperature simulation of GCMs is better than 
precipitation. 
After we assess the performance of all GCMs by using the Ranking Score, the results have been 
shown in the Table 3. The csiro-mk3.6 has a best performance while the bnu-esm is the worst. 
Figure 5 describes the annual precipitation change in the study region. The bnu-esm model vastly 
overestimates the annual rainfall in the study region and the model seems have a reverse change 
when compared with the observation. Even the csiro-mk3.6 also appears that it slightly 
overestimate the annual precipitation in the study area and has a different fluctuant change with 
observation before 70s, the csrio-mk3.6 model has a quite similar fluctuant change with the 
observed data after 1975. 
According to the Table 4, the simulation of GCMs for temperature is better than precipitation. For 
the same GCM model, it will provide a different result for the GCM model performance if it had 
been assessed with the different climate factor, such as the bnu-esm model, it is the 4th better model 
for simulating the temperature but it is the worst model in the 18 GCMs for simulating the 
precipitation. 

Conclusion 
In this paper, a multi-criteria score-based method has been developed to assess GCMs performance 
in the Yellow-Huai-Hai region. The rank score of these criteria are applying to comprehensively 
assess the temporal and spatial performance of precipitation and temperature of 18 GCMs in the 
study region.  
All GCMs have a good performance in simulating temperature. Although all the models have 
underestimated the mean temperature, the result of temporal and spatial distributions is quite close 
to the observation. The skill of GCMs in simulating precipitation is worse than it in simulating 
temperature. Most GCMs overestimate the mean precipitation in the study area.  

Acknowledgements:  

We are very grateful to three anonymous reviewers for their very constructive comments which 
significantly improved the manuscript. We are grateful to the climate modeling groups for 
producing and making available their model output to the public. This work was financially 
supported by the Technology Development Foundation of the Yellow River Institute of Hydraulic 
Research (HKF201604), the National Natural Science Foundation of China (51409116), the Special 
Research Fund of Yellow River Institute of Hydraulic Research (HKY-JBYW-2016-05) and the 
Special Research Fund of Yellow River Institute of Hydraulic Research (HKY-JBYW-2016-08). 

Reference 
[1] Sharma D, Das Gupta A, Babel MS. Spatial disaggregation of bias-corrected GCM precipitation for 
improved hydrologic simulation: Ping River Basin, Thailand[J]. Hydrology and Earth System Sciences, 
2007, 11(4): 1373-1390. 
[2] Giorgi Filippo, Francisco Raquel. Evaluating uncertainties in the prediction of regional climate 
change[J]. Geophysical Research Letters, 2000, 27(9): 1295-1298. 
[3] Seneviratne SI, Nicholls N, Easterling D, et al. Changes in climate extremes and their impacts on the 
natural physical environment: An overview of the IPCC SREX report[A]. EGU General Assembly 
Conference Abstracts[C], Vol. 14, 2012, p. 12566. 
[4] Fu Guobin, Liu Zhaofei, Charles Stephen P, et al. A score‐based method for assessing the performance 
of GCMs: A case study of southeastern Australia[J]. Journal of Geophysical Research: Atmospheres, 2013, 
118(10): 4154-4167. 
[5] Wang Wanqiu, Kumar Arun. A GCM assessment of atmospheric seasonal predictability associated with 
soil moisture anomalies over North America[J]. Journal of Geophysical Research, 1998, 103(103): 
28637&ndash;28646. 
[6] Marengo J. A., Cavalcanti I. F. A., Satyamurty P., et al. Assessment of regional seasonal rainfall 

747

Advances in Engineering Research (AER), volume 143



predictability using the CPTEC/COLA atmospheric GCM[J]. Climate Dynamics, 2003, 21(5-6): 459-475. 
[7] Fu Guobin, Chen Shulin, Liu Changming, et al. Hydro-climatic trends of the Yellow River basin for the 
last 50 years[J]. Climatic Change, 2004, 65(1-2): 149-178. 
[8] Zhang Y., Arthington A. H., Bunn S. E., et al. Classification of flow regimes for environmental flow 
assessment in regulated rivers: The Huai River Basin, China[J]. River Research & Applications, 2012, 28(7): 
989-1005. 
[9] Taylor Karl E, Stouffer Ronald J, Meehl Gerald A. An overview of CMIP5 and the experiment 
design[J]. Bulletin of the American Meteorological society, 2012, 93(4): 485-498. 
[10] Hanna Steven R, Heinold David W. Development and application of a simple method for evaluating air 
quality models[M]. American Petroleum Institute, 1985. 
[11] Randall David A, Wood Richard A, Bony Sandrine, et al. Climate models and their evaluation[M]. 
Climate Change 2007: The physical science basis Contribution of Working Group I to the Fourth Assessment 
Report of the IPCC (FAR). Cambridge University Press. 2007: 589-662. 
[12] Hirsch Robert M, Slack James R, Smith Richard A. Techniques of trend analysis for monthly water 
quality data[J]. Water Resources Research, 1982, 18(1): 107-121. 
[13] Sen Pranab Kumar. Estimates of the regression coefficient based on Kendall's tau[J]. Journal of the 
American Statistical Association, 1968, 63(324): 1379-1389. 
[14] Harvey LDD, Wigley TML. Characterizing and comparing control-run variability of eight coupled 
AOGCMs and of observations. Part 1: temperature[J]. Climate Dynamics, 2003, 21(7-8): 619-646. 
[15] Mu Qiaozhen, Jackson Charles S, Stoffa Paul L. A multivariate empirical-orthogonal-function-based 
measure of climate model performance[J]. Journal of Geophysical Research: Atmospheres 2004, 109: 
D15101, doi:15110.11029/12004JD004584. 
[16] Brier Glenn W. Verification of forecasts expressed in terms of probability[J]. Monthly Weather Review, 
1950, 78(1): 1-3. 
[17] Fraedrich K, Leslie LM. Evaluation of techniques for the operational, single station, short-term 
forecasting of rainfall at a midlatitude station (Melbourne)[J]. Monthly Weather Review, 1987, 115(8): 
1645-1654. 
[18] Perkins SE, Pitman AJ, Holbrook NJ, et al. Evaluation of the AR4 climate models' simulated daily 
maximum temperature, minimum temperature, and precipitation over Australia using probability density 
functions[J]. Journal of Climate, 2007, 20(17): 4356-4376. 
[19] Watterson Ian G. Calculation of probability density functions for temperature and precipitation change 
under global warming[J]. Journal of Geophysical Research: Atmospheres (1984–2012), 2008, 113: D12106, 
doi:12110.11029/12007JD009254. 

748

Advances in Engineering Research (AER), volume 143



 
Figure 1. Location of meteorological stations and the selected GCMs grids (solid 

circle) in the study region 

 
Figure 2. Empirical cumulative probabilities of monthly mean temperature 

 
Figure 3. The annual temperature change in the Yello-Huai-Hai region 

inm-cm4 

ipsl-cm5b-lr 
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Figure 4. Empirical cumulative probabilities of monthly mean precipitation 

 
Figure 5. The annual precipitation change in the Yello-Huai-Hai region 

 

Table 1.  Statistics of Climate Variables and Their Weights 

Statistics of Climate Variables Criteria Weights 
Mean  Relative error (%) 1 

Standard deviation Relative error (%) 1 
Temporal change NRMSE 1 

Monthly distribution Correlation coefficient 1 
Spatial distribution Correlation coefficient 1 

Trend and its magnitude Mann-Kendall test Z 0.5 
Sen’s magnitudeβ 0.5 

Space-time variability EOF1(first vector) 0.5 
EOF2(second vector) 0.5 

Probability density 
functions (PDFs) 

BS（Brier score） 0.5 

Sscore（Significance score） 0.5 

bun-esm 
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Table 4.  The scores of GCMs for monthly temperature and precipitation 
 ID temperature precipitation Total 
access1-0 1 16.17  15.91 32.08  
bcc-csm1 2 29.98  32.25 62.23  
bnu-esm 3 17.56  50.75 68.31  
canesm2 4 19.57  41.91 61.48  
ccsm4 5 11.91  18.57 30.48  
cesm1-bgc 6 15.17  23.74 38.91  
cnrm-cm5 7 30.23  23.16 53.39  
giss-e2-h 8 31.04  31.15 62.19  
csiro-mk3.6 9 21.89  11.73 33.62  
fgoals-g2 10 24.71  35.99 60.70  
gfdl-cm3 11 22.03  32.17 54.20  
hadgem2 12 18.19  23.7 41.89  
inm-cm4 13 43.78  25.68 69.46  
noresm1-m 14 20.93  23.93 44.86  
miroc-esm 15 32.88  30.06 62.94  
mpi-esm-lr 16 17.92  29.7 47.62  
ipsl-cm5b-lr 17 36.20  29.99 66.19  
mri-cgcm3 18 21.30  26.22 47.52  
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