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Abstract. Nonlinear transformation between the isoparametric and the Cartesian coordinates may 
make the elements more sensitive to mesh distortion. By using the second kind of quadrilateral 
coordinate method QACM-II, which can keep the transformation always linear between the area and 
the Cartesian coordinate systems, a 4-node plane element ACQλ2 was developed based on optimized 
generalized conforming conditions. Additional displacement field based on internal parameters was 
also used to make the whole displacement field quadratic complementary. 

Introduction 
As a local coordinate system, isoprametric coordinate method was widely used for developing finite 
elements as its convenience, such as the most famous elements Q6[1] and QM6[2], but the nonlinear 
transformation between the isoparametric and the Cartesian coordinates would lead to a problem that 
the serendipity family was quite sensitive to the mesh distortions.  

For overcoming this inherent defect of isoparametric coordinates，Long et al. [3, 4] developed the 
first kind of quadrilateral area coordinate method QACM-I. For this kind of quadrilateral coordinate 
method, the transformation between the area and the Cartesian coordinate systems is always linear, so 
it is powerful for developing new elements which are much more insensitive to mesh distortion.   

By using QACM-I, Chen et al. [5] proposed 4-node quadrilateral membrane elements AGQ6-I and 
AGQ6-II, which are locking free of MacNeal’s thin beam. Based on this research, Cen et al. [6] 
derived out the analytical element stiffness matrix of AGQ6-I and developed a family of the 
quadrilateral plane membrane elements [7].  

As QACM-I contains four area coordinate components (L1, L2, L3, L4), among which only two are 
independent, Chen et al. [8] proposed the second kind of quadrilateral coordinate method QACM-II 
which has only two independent coordinate components Z1 and Z2.  

In this paper, based on generalized conforming theory[9], a 4-node plane element ACQλ2 was 
developed by using QACM-II. Its nodal displacement field was formulated with optimized 
conforming conditions which would introduce fewest restrains on element’s sides, and additional 
displacement field based on internal parameters was used to make the whole displacement field 
quadratic complementary. 

Generalized conforming conditions 

According to the theory of generalized conforming，the conforming conditions for plane elements 
under constant stresses are as follows: 

Compatibility of constant stress xσ : 

                        (1) 
Compatibility of constant stress yσ : 

                       (2) 
Compatibility of constant stress xyτ : 
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                               (3) 
Compatibility of rotation： 

                              (4) 
Compatibility of motion along x : 
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Compatibility of motion along y :  
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Eq.3 and Eq.4 can be written in equivalent form as follows: 

                                                                (7) 
Then there are three conforming conditions for u  and v  respectively, and for a 4-node element, the 

additional condition was selected as follows:  
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Formulation of nodal displacement 
The nodal displacement field of the new element can be assumed with QACM-II as follows: 

1 2 1 3 2 4 1 2

1 2 1 3 2 4 1 2

q

q

u Z Z Z Z
v Z Z Z Z

α α α α

β β β β

= + + +

= + + +
                                                       (9) 

With the conforming conditions presented in Eq.1~Eq.8, the undetermined parameters can be 
formulated out. 

Substitute the results of ( 1,2,3,4)i iα =  into Eq.9，then the shape functions of nodal displacement 
can be written as: 
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The Partial derivatives of shape functions are as follows: 
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Then the matrix of strains qB can be formulated out. The stiffness matrix of nodal displacement 
field can be written as:  

T
q q q

A

tdA= ∫∫K B DB                                                                             (12) 

Where D  is the elastic matrix and t is the thickness of element. 

Formulation of additional displacement 
Additional displacement field is assumed as follows: 
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                                                                             (13) 

The shape functions of internal parameters can be selected as follows: 

( )

( )

22 2
1 1 2 1 1 3 2 2 1

22 2
2 2 3 2 2 2 1 3 2

2 1 2( ) 1 ( )
3 3 9
2 1 2( ) 1 ( )
3 3 9

N Z g g Z g g g g

N Z g g Z g g g g

λ

λ

 = − − − − + + − 

 = − − − − + + − 

                                  (14) 

These two shape functions both can satisfy the conforming condition as:  

                                                                (15) 
With static condensation method, the stiffness matrix of element can be written as: 
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where λB  is the strain matrix about iNλ , it can be formulated with partial derivatives as follows: 
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This element model is denoted as ACQλ2. 
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Numerical examples 
Example 1. Patch test 
The constant strain/stress patch test is shown in Fig.1. Let Young’s modulus E=1000, Poisson’s 
ratio μ=0.25, and thickness of the patch t=1. ACQλ2 can present exact solutions as listed in Tab.1. 
 

                                                                                    Tab.1 Exact solutions of Patch test 
Node ui vi 

1 0.0 0.0 
2 0.0 -0.25 
3 0.0 -0.5 
4 2.0 -0.125 
5 2.5 0.0 
6 4.0 0.0 
7 4.0 -0.5 

Example 2. Cook’s skew beam 
A skew cantilever beam under shear distributed load at the free edge, as shown in Fig. 2, was 
proposed by Cook et al. [10]. The results of vertical deflection at point C, the maximum principal 
stress at point A and the minimum principal stress at point B are listed in Table 2.  
 

 

 

 

 

 

 

                                        Tab.2  Results of Cook’s skew beam 

Element  

VC   σAmax   σBmin  
2×2 4×4 8×8  2×2 4×4 8×8  2×2 4×4 8×8 

Q4  11.80 18.29 22.08  0.1217 0.1873 0.2242  -0.0960 -0.1524 -0.1869 
QM6  21.05 23.02 -  0.1928 0.2243 -  -0.1580 -0.1856 - 
HL[11]  18.17 22.03 23.39  0.1582 0.1980 0.2205  -0.1335 -0.1770 -0.1931 
P-S[12]  21.13 23.02 23.88  0.1854 0.2241 0.2364  - - - 

 ACQλ2  20.74 22.99 23.69  0.1936 0.2256 0.2345  -0.1452 -0.1866 -0.1987 

Example 3. Cantilever beam divided by five quadrilateral elements 
A cantilever beam divided by five irregular quadrilateral elements is shown in Fig.3. Two loading 
cases are considered: (a) pure bending under moment M=2000; (b) shear bending under transverse 
force P=150. The Young’s modulus E=1500 and Poisson’s ratio μ=0.25. The results of the vertical 
defection vA at point A and the stress σxB at point B are given in Tab. 3. 
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Fig.2  Cook’s skew beam 
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                                                                                    Tab.3 Results of cantilever beam 

Element 
 

M  P 
vA σxB  vA σxB 

Q4  45.7 -1761  50.7 -2448 
QM6  96.1 -2497  98.0 -3235 

QC6[13]  96.1 -2439  98.1 -3339 
NQ6[14]  96.1 -2439  98.0 -3294 

P-S  96.2 -3001  98.1 -3899 
ACQλ2  96.0 -3015  98.0 -4135 
Exact  100 -3000  102.6 -4050 

Conclusions 
By using the second kind of quadrilateral coordinate method QACM-II, a 4-node plane element 
ACQλ2 was developed based on generalized conforming theory. Optimized conforming conditions 
were selected to make the nodal displacement field keep lowest order and fewest restrains were 
applied on element’s sides. Additional displacement field based on internal parameters was also used 
to make the whole displacement field quadratic complementary. 

References 
 [1] E L Wilson, R L Taylor, et al., Incompatible displacement models, Numerical and Computer  
Methods in Structural Mechanics, In: S J Fenves et al., eds, Academic Press, New York, 1973, 43-57. 
[2] R. L. Taylor, P. J. Beresford, E. L. Wilson. A non-conforming element for stress analysis. 
International Journal for Numerical Methods in Engineering, Vol. 10, pp. 1211−1219, 1976. 
[3] Y.Q. Long, J.X. Li, Z.F. Long, and S. Cen. Area coordinates used in quadrilateral elements. 
Communications in Numerical Methods in Engineering, vol. 15, no. 8, pp. 533–545, 1999.  
[4] Z.F. Long, J.X. Li, S. Cen, and Y.Q. Long. Some basic formulae for Area coordinates used in 
quadrilateral elements.  Communications in Numerical Methods in Engineering, vol. 15, no. 12, pp. 
841–852, 1999. 
[5] X.-M. Chen, S. Cen, Y.-Q. Long and Z.-H. Yao, “Membrane elements insensitive to distortion 
using the quadrilateral area coordinate method”, Computers & Structures, vol. 82, no. 1, pp. 35–54, 
2004. 
[6] S. Cen, Y Du, X.-M. Chen and X.-R. Fu, “The analytical element stiffness matrix of a recent 
4-node membrane element formulated by the quadrilateral area coordinate method”, Communications 
in Numerical Methods in Engineering, vol. 23, no. 12, pp. 1095–1110, 2007. 
[7] S. Cen, X.-M. Chen and X.-R. Fu, “Quadrilateral membrane element family formulated by the 
quadrilateral area coordinate method”, Computer Methods in Applied Mechanics and Engineering, 
vol. 196, no. 41-44, pp. 4337–4353, 2007. 
[8] X.M. Chen, S. Cen, X.R. Fu, and Y.Q. Long, “A new quadrilateral area coordinate method 
(QACM-II) for developing quadrilateral finite element models,” International Journal for Numerical 
Methods in Engineering, vol. 73, no. 13, pp. 1911–1941, 2008. 
[9] Y.Q. Long, M.F. Huang. A generalized conforming isoparametric element. Appl. Math. Mech. 
–English Edition 9(10), pp. 929-939, 1988. 
[10] Cook RD, Malkus DS, Plesha ME. Concepts and applications of finite element analysis. 3rd ed. 
New York: John Wiley & Sons Inc.; 1989. 
[11] Cook RD. Improved two-dimension finite element. J Struct Div, Asce 1974; 100ST9:1851-63. 
[12] T.H.H. Pian and K.Sumihara, Rational approach for assumed stress finite elements. International 
Journal for Numerical Methods in Engineering, vol. 20, no. 9, pp. 1685-1695, 1984. 
[13] W. J. Chen, L. M. Tang. Isoparametric quasi-conforming element. Journal of Dalian University 
of Technology, Vol. 20, no. 1, pp. 63−74, 1981. 
[14] T.H.H. Pian, C. C. Wu. Hybrid and Incompatible Finite Element Methods. Chapman & 
Hall/CRC, Boca Raton, 2006. 
 

2 A 

1 1 2 3 3 

4 1 1 2 2 

B 

P 

P 

M 

P 

Fig.3 Cantilever beam with five irregular 
elements 

1192

Advances in Engineering Research (AER), volume 143




