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Abstract. Nonlinear transformation between the isoparametric and the Cartesian coordinates may
make the elements more sensitive to mesh distortion. By using the second kind of quadrilateral
coordinate method QACM-II, which can keep the transformation always linear between the area and
the Cartesian coordinate systems, a4-node plane element ACQA2 was devel oped based on optimized
generalized conforming conditions. Additional displacement field based on internal parameters was
also used to make the whol e displacement field quadratic complementary.

Introduction

As alocal coordinate system, isoprametric coordinate method was widely used for developing finite
elements as its convenience, such as the most famous elements Q6[1] and QM6[2], but the nonlinear
transformation between the isoparametric and the Cartesian coordinates would lead to a problem that
the serendipity family was quite sensitive to the mesh distortions.

For overcoming thisinherent defect of isoparametric coordinates, Long et al. [3, 4] developed the
first kind of quadrilateral area coordinate method QACM-I. For thiskind of quadrilateral coordinate
method, the transformation between the area and the Cartesian coordinate systemsis alwayslinear, so
it is powerful for developing new elements which are much more insensitive to mesh distortion.

By using QACM-I, Chen et al. [5] proposed 4-node quadrilateral membrane elements AGQ6-1 and
AGQ6-I1, which are locking free of MacNeal’s thin beam. Based on this research, Cen et al. [6]
derived out the analytical element stiffness matrix of AGQ6-1 and developed afamily of the
guadrilateral plane membrane elements[7].

As QACM-I contains four area coordinate components (L1, Lo, L3, Ls), @among which only two are
independent, Chen et al. [8] proposed the second kind of quadrilateral coordinate method QACM-II
which has only two independent coordinate components Z; and Z.

In this paper, based on generalized conforming theory[9], a 4-node plane element ACQA2 was
developed by using QACM-II. Its noda displacement field was formulated with optimized
conforming conditions which would introduce fewest restrains on element’s sides, and additional
displacement field based on internal parameters was used to make the whole displacement field
guadratic complementary.

Generalized conforming conditions

According to the theory of generalized conforming, the conforming conditionsfor plane elements
under constant stresses are as follows:

Compatibility of constant stress s |, :

([ 2.0 =[[ 2 dd = § tuds = prds
| Na &=t .

(1)
Compatibility of constant stress s | :
dv
£ dAd=||— d4d = mvds = mids
[[e,a =] 2 at=gmes =§ o
Compatibility of constant stress't
Copyright © 2017, the Authors. Published by Atlantis Press. 1188

This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).


mailto:Hanee@126.com

ATLANTIS
PRESS Advances in Engineering Research (AER), volume 143

el

_[_[fcﬂ‘i—_[_[ = 2 = P+ ) ds = §(omi +19) s
C-'xll,l

©)
Compatibility of rotation:
[[2mda = [[ —'—— Jt = (v —mu)ds = (15— mi) ds .
Compatibility of motion along X: @
4 (u- ) =0 (5)
Compatibility of motion alorilZ;ly :
& (v-¥), =0 (6)
Eq.3 and Eq.4 can be writtenl Tln equivaent form as follows:
[[_da ¢ muds = mids
&v .
f S dd= P lvds = s -

Then there are three conforming conditionsfor u and v respectively, and for a4-node element, the
additional condition was selected as follows:

4
a (u- &) xh, =
N (8)
a(v- ) xh, =0
i=1

Formulation of nodal displacement

The nodal displacement field of the new element can be assumed with QACM-II asfollows:
u, =a, +a,z, +a,z, +a,z 7z, ©

Vq = bl + bZZl + b322 + b4ZIZZ
With the conforming conditions presented in Eq.1~Eq.8, the undetermined parameters can be
formulated out.
Substitute the results of a. (i =1,2,3,4) into Eq.9, then the shape functions of nodal displacement
can be written as:

:1+3(glga' 9294)gjxi X e h, (g 92)91 0z,
41+ 0,95+ 9,9.) " & 1+0,0,+0,0,

h§ X (9. 9)9, 4, o Xhg,

qi

(10)

+— aZ

4g 140,0:+0,0,0  4(1+0,.0:+9,9,)
The Partial derivatives of shape functions are as follows:

leZ
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=_Egl h (9~ 9,)9, 0, hb, & x(9,- 9,)9, :
ﬂX e 1+ 0,9; 0, g4u 4A e 1+glgs+gzg4u
3xh, b, _ & a=1234 j=i+20
9, gblz &Zlg C . .J +
4(1+9,0,+9,0,) EA Ay when i=3, j=1 (11

xi(9,- 9,)g; U éWhen i=4, j=2 4

ﬁ:_ﬁlgl (93 gZ)g]l:I hC e]_ i
Ty é 1+9,0;+0, g4u 4A é 1+ 0:9; + 9,9,
g, at.ch + 22
(1+ glg3+g 94) A g

Then the matrix of strains B, can be formulated out. The stiffness matrix of nodal displacement
field can be written as:
Ky = (‘l‘j_%qT DB, tdA (12)
Where D isthe elastic matrix ar:\dt is the thickness of element.

Formulation of additional displacement

Additional displacement field is assumed as follows:
U =1,N; +1,N

‘ . (13)
VI :|1NI1+I 2NI2
The shape functions of internal parameters can be selected as follows:
2 1. .~ 2
I\|| 11— 212 - _(gz - gl)zl - _Q(gs - 92)2 +1u+_(gz - 91)2
3 3€ U 9 (14)
2 1. . 2
Nl 2= 222 - 5(93 - gz)zz - 52(92 - gl)2 +1H+§(gs - gz)z
These two shape functions both can satisfy the conforming condition as:
N,
[ da=IN,ds=0
=" C-“.'x.’
N ; i
([ dd=fmV, ds=0
e
[[N,.d1=0
- (15)
With static condensation method, the stiffness matrix of element can be written as:
K=K, - KKK, (16)
K| :@jS,TDBI tdA
" (19)

K, = (@B ' DB,tdA
A
where B, isthestrain matrix about N, ,, it can be formulated with partial derivatives as follows:
N, _2b_ 2b N, _2b_ 2b
A—_blz _bl(gz_ gl) #:_bzz __2(93_ gz)

™ AT ™ A Z
-2z P, g) 22272, g) >
ﬂy A 2 1 ﬂy A 3 2

This element mode is denoted as ACQA2.
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Numerical examples

Example 1. Patch test
The constant strain/stress patch test is shown in Fig.1. Let Young’ s modulus E=1000, Poisson’s
ratio 4=0.25, and thickness of the patch t=1. ACQA2 can present exact solutions as listed in Tab.1.

Ts 7 Tab.1 Exact solutions of Patch test
;‘f' 2 Node u Y
1 I , [E=1000 4=0.25 L oo 1 0.0 0.0
X l H— a4 2 0.0 -0.25
1 . 5 6 3 0.0 -05
- AN 4 2.0 -0.125
2 ! 0-5! 15 5 25 0.0
6 4.0 0.0
Fig.2 Patch test 7 4.0 -0.5

Example 2. Cook’s skew beam

A skew cantilever beam under shear distributed load at the free edge, as shown in Fig. 2, was
proposed by Cook et a. [10]. The results of vertical deflection at point C, the maximum principal
stress at point A and the minimum principal stress at point B are listed in Table 2.

y B C } J— P
1
E=1500,4=1/3
4| 4 4 :
A
B | 48 | X

|
Fig.2 Cook’s skew beam
Tab.2 Results of Cook’s skew beam

Ve O Amax OBmin
Element 2x2 4x4 8x8 2x2 4x4 8x8 2x2 4x4 8x8
Q4 11.80 18.29 22.08 0.1217 01873 02242  -0.0960 -0.1524 -0.1869
QM6 21.05 23.02 - 0.1928  0.2243 - -0.1580 -0.1856 -
HLEY 18.17 22.03 23.39 0.1582 01980 02205 -0.1335 -0.1770 -0.1931
p-gi*2 21.13 23.02 23.88 0.1854 0.2241 0.2364

ACQA2 20.74 22.99 23.69 0.1936 0.2256  0.2345 -0.1452  -0.1866  -0.1987

Example 3. Cantilever beam divided by five quadrilateral elements

A cantilever beam divided by five irregular quadrilateral elementsis shown in Fig.3. Two loading
cases are considered: (a) pure bending under moment M=2000; (b) shear bending under transverse
force P=150. The Y oung’s modulus E=1500 and Poisson’s ratio 4=0.25. The results of the vertical
defection v at point A and the stress oy @t point B are givenin Tab. 3.
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Tab.3 Results of cantilever beam

Element M P
=) | 2 1| 1| 4 =)

Va OxB Va OxB
- Q4 457 1761 50.7  -2448
T / / / \ )M QM6 96.1  -2497 980  -3235
QCel 961  -2439 981  -3339
P NQ6!M! 961  -2439 980  -3294
!1! 1! 2 ! 3 l 3 P-S 962  -3001 981  -3899
Fig.3 Cantilever beam with five irregular ACQR2 9.0  -3015 980 4135
ol crmonte Exact 100  -3000 1026  -4050

Conclusions

By using the second kind of quadrilateral coordinate method QACM-II, a 4-node plane element
ACQML2 was developed based on generalized conforming theory. Optimized conforming conditions
were selected to make the nodal displacement field keep lowest order and fewest restrains were
applied on element’s sides. Additional displacement field based on internal parameters was also used
to make the whole displacement field quadratic complementary.
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