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Abstract. In this paper, we introduce the Hamiltonian system to study bending problems of elastic 
cantilever-beam. The variational method and the variable seperation method are employed to establish 
the dual governing equations. Due to the completeness property of the eigenvectors, the solution can 
be expressed by the linear combination of these eigenvectors, and the coefficients of the combination 
are determined by the boundary conditions. In the numerical results, stress distributions of bending 
deformation are discussed. 

Introduction 
The cantilever beam has been widely applied in modern engineering. Its deformation is mainly in the 

form of bending. The traditional calculation method always using semi-inverse method such as the 
displacement method and the stress method [1,2]. In the 1850s, Saint-Venant proposed the famous 
semi-inverse solution method.  According to this method, to obtain the complete general solutions of 
the governing equations, one can firstly assume some appropriate deformations or stresses. Then 
substitute the assumptions into the governing equations to find the other solutions, and lastly check the 
correctness of the assumptions.  Due to the applying of assumptions of deformation or stress, it is 
necessory to verify the correctness of the final results. The semi-inverse method method has at least 
three limitations: (1) the solution is not complete, and can only approximately satisfy the boundary 
conditions. For example, when the fixed end of the cantilever beam is subjected to displacement 
constraints, the stress concentration will occur when external force are imposed [3]. The semi-inverse 
method cannot be explained this kind of concentration. (2) the assumption is only applicable to simple 
mechanical models, and for complex boundary condition problem, it is difficult to give reasonable 
assumptions. (3) when discussing the governing equations and boundary conditions using the 
displacement method or force method, it will inevitably lead to high order partial differential equations.  

Zhong developed the exact symplectic approach for elastic problems on the basis of the 
mathematical theory of symplectic geometry [4]. In contrast to the well known semi-inverse method, 
this approach takes original variables and their dual variables as the basic variables, and hence the 
difficulty of solving high order differential equations in the traditional methods is overcome. The 
symplectic approach can explain the approximation of Saint-Venant principle theoretically: the exact 
solution consists of two parts, the Saint-Venant solution and the local solution. The local solution 
decays with the distance from the boundary, which is termed by the Saint-Venant principle, and is often 
neglected. In recent years, the symplectic approach gains much attention, and has been applied 
successfully into various branches of applied mechanics. 

In this paper, on the bisis of variable seperation method and the principle of minimum energy, we 
apply the Hamiltonian system method to discussed the bending problem of the elastic cantilever beam. 
By using this method, the stress distribution of bending problems are obtained numerically, and stress 
concentration due to displacement constraints are well expained. Since the displacement and stress 
components are used as the basic variables, the Hamiltonian system method can be employeed to 
various branches of engineering problems. 
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Solution method  
Consider a homogeneous viscoelastic strip plane-domain in the Cartesian coordinate (x, z). The origin 

is located at the central point of the free end of the domain, and the width and the length are l and 2h, 
respectively. The boundary conditions at the free end and the fix end are 
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The strain energy density function can be described as 
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According to the principle of minimum potential energy, the result of the variation is just the dual 
equation in Hamiltonian system 

ψ ψ= H&                                                                                                                                                  (3) 

where { }, , , Tw uψ σ τ= ,  H  is the Hamiltonian operator metrix. 
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in which  1 vω = , 2
2 (1 ) /v Eω = − , 3 2(1 ) / ,v Eω = +  4 Eω = . By adopting the separation variable 

method, the governing equation is replace by the dual equations of the Hamiltonian system 

( ) ( )j j jx xψ κ ψ=H                                                                                                                                (5) 

where jκ  is an eigenvalue, and jψ  is its cooresponding eigenvactor. Based on the property of the 
Hamiltonian operator matrix H, the inner product of the functional is defined as 

1
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where  1ψ  and  2ψ  are arbitrary eigenvectors, J is a unit rotational matrix. It can be proved that if  jµ  
is an eigenvalue,  jµ−  is an eigenvalue also. Except zero eigenvelue, non-zero eigenvelues can be 
divided into two groups: 

jαµ : 0)Re( <αµ  or 0)Re( =αµ  , 0)Im( <αµ and  αβ µµ −= . There are 
adjoint symplectic relationships of the ortho-normalization between the eigenvectors, namely 
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Thus an arbitrary whole state vector cψ  can always be expanded by the linear combination of the 
eigenvectors, or 
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where , , , , ,
j j

T T
n c n cb cβ αψ ψ ψ ψ=< > = − < >J J . It can be proved that the space of eigensolutions is 

complete. 

The special solutions 
Due to the adjoint symplectic relationship of ortho-normalization between the eigensolutions, the 

inhomogeneous term  f  can be developed as 

* *( ) ( ) ( ) ( )
n nn nd z x g z xα βψ ψ = + ∑f                                                                                                                   (9) 

The coefficients ( ) [ , , ( )]
nnd z xβψ= f J ，  ( ) , , ( )

nng z xαψ=< >f J . Suppose pψ is a special solution: 
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The solutions of Eqs.(38) are 
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Fig.1 The distribution of shear stress component / Eτ   

 
Fig. 2 The distribution of normal stress component / Eσ   

Numerical computations 
Let’s consider the bending problem when the free end is subjected to a simple couple M .  The constants of 

the materials and the external couple are selected as: 4E GPa= , 0.25v = , 0.1h m= , 5l h = , 4M KN= .  
Fig. 1 and Fig. 2 give contour lines of the normal stress and shear stress distributions. The figures explain that the 
stress concentrations are distinct near the boundary due to the restraints of the displacements. 
However, the concentrations fall off at a rapid rate along the coordinate z. It can also be seen from the 
figures the maximum normal stress in this case are much smaller compared with the shear stresses. 
Thus, we can conclude that the shear stress should be considered firstly in the engineering practices. 

Conclusions 
Using the correspondence principle, The Hamiltonian system method is applied to the elastic 

materials bending problems, and all the eigenvectors obtained in analytical form. The eigenvector space 
is complete, and thus, the arbitrary boundary conditions expansion form of linear combination of 
eigenvectors, the combination coefficients can be determined according to the specific boundary 
conditions.  
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