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Abstract. In this paper, we introduce the symplectic method into the quasi-static analysis of the 
viscoelastic circular cylinders, with the emphasis on the local effects. By using the of variable 
separation method, all the general eigenvectors of the problem are obtained analytically. The traditional 
Saint-Venant problems and local effect problems can described by combinations of the eigenvectors. 
Numerical results show the local effects due to the displacement constraints. 

Introduction 
Recently, a great amount of computational techniques can be found in the research of viscoelastic 

problems [1]. However, it is difficult to find analytical solutions because of the complexity of the 
constitutive relations. Therefore, the numerical method is taken into account, especially the finite 
element method, which iswidely applied in the analysis of viscoelastic problems, and has been proved 
to be an effective method [2]. The other important tool is the boundary element method. Compared 
with the finite element method, the boundary element method can reduce the dimension of the problem 
and provide an attractive idea for the viscoelastic research [3]. Based on differential constitutive 
relations, Mesquita and Coda [4] provided the important algebraic equations and presented a method 
for the treatment of two dimensional coupling problems between the finite element method and the 
boundary element method by discussing Kelvin and Boltzmann models in a two-dimensional boundary 
element atmosphere. 

In this paper, the symplectic method is further applied to viscoelastic circular cylinder problems. On 
the basis of the variable separation method and the Laplace intagerl, all the fundamental eigenvectors of 
the governing equations are obtained in the Laplace domain directly. Because the eigenvectors are 
expressed in concise analytical forms, their corresponding expressions in the time domain can be 
obtained easily. Thus the eigenvector expansion method can be applied directly in the eigenvector 
space of the time domain, and the iterative application of Laplace transform is not needed. Moreover, 
the boundary conditions, such as displacement conditions, stress conditions and mixed conditions of 
displacement and stress, can be conveniently described by the fundamental variables, since the 
generalized displacements and stresses are used as fundamental variables. As the application of the 
method, some typical numerical examples are presented to describe the stresses and deformations of 
the viscoelastic hollow circular cylinder under certain boundary conditions. The results demonstrate 
that local effects due to displacement constraints are significant but only confined to a local region near 
the end. Because of the viscoelastic property of the material, the displacements exhibit the creep 
phenomenon when the cylinder subject to external force. 

Governing equations in the symplectic system  
ConsiderA homogeneous isotropic viscoelastic hollow circular cylinder. Let the origin of the 

cylindrical coordinates ( , , )r zθ be located at the center of the cylinder, with the z axis pointing the 
longitudinal direction. We suppose that the behavior of the material is governed by the standard 
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viscoelastic model., which consists of a spring and Kelvin model connected in series, where the spring 
is used to represent the instantaneous elastic response and the Kelvin model to represent the delayed 
elastic response. The bulk behavior of the model is supposed purely elastic, which results in a constant 
modulus K . Thus, the material is characterized by two shear moduli 1G  and 2G , one viscosity 
coefficient η , and one bulk modulus K . In order to derive the final governing equations of the 
symplectic system, the function of the strain energy density in the Laplace domain is written as 
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in which a dot on a variable represents its partial differential. To convert the Lagrangian description to 
Hamiltonian, write the displacement variables in vector form T ={ , }u wq . The symplectic system 
method requires the dual vector p  be obtained by direct differentiation of the function of the strain 
energy density 
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Using the principle of minimum total potential energy, we get 

=Y HY&                                                                                                                                                  (3) 

where { }T
1 2, ,u w p p=Y , , and H  is the Hamiltonian operator matrix. the eigenequation in the 

symplectic system is obtained as 

( ) ( )r rψ κψ=H                                                                                                                                  (4) 

where κ  is the eigenvalue, and ψ  is the corresponding eigenvector. 

Nonzero eigenvectors 
For axial symmetric case, zero eigenvectors only consist of solutions of the rigid body motion and 

the simple tension along z  direction, and they can’t reveal the local effects. In this section, Nonzero 
eigenvectors corresponding to the local effects, which decay exponentially in the distance from the 
edges according to the Sain-Venant principle, will be discussed. Consider Eq. (4), we have 

( ) 0 ( 0)κ ψ κ− = ≠H I                                                                                                                                (5) 

The displacement components of the general solution of Eq. (5) can be expressed as 
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in which the functions rR  and 0R  satisfy 
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respectively, where /d d dr= , 2 2 2/d d dr= . The solutions are 
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where 1 2 3, ,c c c  and 4c  are integral constants, and ( )nJ rκ  and ( )nY rκ  are Bessel functions and 
Neumann functions, respectively. Substituting Eq. (8) into Eqs. (6), we get the nonzero eigenvector 
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where ijα  are constants, and ( )n nJ J rκ= , ( )n nY Y rκ= . As an example, we discuss the stress lateral 
boundary conditions: 
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To homogenize boundary conditions (10), let 

** ** ** ** ** T
1 2{ , , , }u w p p=Y                                                                                                                      (11) 

where  ** 2 2 2 2 2 2 2 2(1 )( ) /( ) (1 )( ) /( )a b a b
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rz rzp r b r b a r a r a bτ τ= − − + − − . Then the new governing equation is established as 

* **= −Y Y Y                                                                                                                                                    (12) 

The governing equation is changed into nonhomogeneous one 

* * *= +Y HY g&                                                                                                                                                    (13) 

Numerical calculations 

The geometrical data and the parameter are selected as : 0 4,a / b .=  0 8,l / b .=  1 22G G K= = . The 
end conditions are 0 ( )w u z l= = = −  and 0 , 0 ( )z rzp z = lσ τ= = . According to Saint-Venant 
principle, the effect of displacement constraints is confined near the end z l= −  and decreases rapidly 
with the distance from the end. The point of view can be well explained by Fig. 1 and Fig. 2. The values 
of the figures are nearly constants near the end z l= , which demonstrate that zero eigenvectors 
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provide the approximate solution. However, this approximation is not accurate enough near the 
clamped end z l= − , where the local effects are shown. 

 
Fig. 1 Stress 0/z pσ  distribution 

 

    
Fig. 2 Stress 0/rz pτ  distribution 

Conclusion 
On the basis of the adjoint symplectic relationships between the eigenvectors, the solution of the 

governing equation in the symplectic system can be expressed by the combination of eigenvectors. 
Because the eigenvectors in the time domain can be obtained easily by using the analytical inverse 
Laplace transform, the eigenvector expansion method can be applied in the time domain directly. 
Numerical results demonstrate that local effects appear in the region near the displacement constraints 
and decay rapidly with the distance from the boundary.  
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