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Abstract: In this paper, the governing equation of dynamic analysis for frame structures is derived,
with geometric nonlinearity considered. In the process of derivation, the updated Lagrange format is
adopted and the elemental equilibrium equation is established at current configuration and then
transformed into the initial configuration. To simplify the calculation of mass matrix, it is assumed
that the beam’s mass is only related with its rigid configuration. In other words, the mass effect due
to the beam’s deformation is ignored. Finally, a numerical example about dynamic buckling
analysis of a circular arch subjected to a uniformly distributed step load is presented and discussed
detailedly, demonstrating the validity and accuracy of the present method.

Introduction

The geometric nonlinear analysis of beam-structures is a very classical problem, which has
attracted many researchers in the past half century. Since it is not a simple extension from its
counterpart of linear analysis, many researchers have paid their attention on this field. Bathe and
Bolourchi [1] presented a Total Lagrange (TL) formulation and an Updated Lagrange (UL)
formulation for large rotation nonlinear analysis of three-dimensional beams. Belyschko and Hsieh
[2] proposed a nonlinear transient Finite Element (FE) analysis for two-dimensional beams with
convected co-ordinates. Yang, Kuo and Wu [3] derived a co-rotational formulation for structural
frames, in which the displacements of each element were subdivided into rigid body displacements
and natural deformations.

In this paper, the governing equation of dynamic analysis for frame structures is derived, with
geometric nonlinearity considered. In the process of derivation, the updated Lagrange format is
adopted and the elemental equilibrium equation is established at current configuration and then
transformed into the initial configuration. To simplify the calculation of mass matrix, it is assumed
that the beam’s mass is only related with its rigid configuration. In other words, the mass effect due
to the beam’s deformation is ignored. Finally, a numerical example about dynamic buckling
analysis of a circular arch subjected to a uniformly distributed step load is presented and discussed
detailedly, demonstrating the validity and accuracy of the present method.

The governing equation of dynamic analysis considering geometric nonlinearity

The derivation of dynamic government equation is similar with that of static government
equation. The updated Lagrange format is adopted and the elemental equilibrium equation is
established at current configuration and transformed into the initial configuration, see Figure 1.

From virtual work principle it can be concluded that
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Where t t A denotes the virtual work by external force and inertia force, which is essentially a

kind of body force and can be stated as the following equation
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Figure 1 the configuration of beam element in motion

To simplify the calculation of inertia force, it is assumed that the beam’s mass is only related
with its rigid configuration. In other words, the mass effect resulted from its deformation is not

taken into account. Shown in Figure 1, the original length of beam is denoted as l, density as  ,

cross-section area as A, torsional moment as J, so the concentrated mass and mass moment at the

beam end-points is / 2Al and / 2Jl respectively. Equation (2) can be stated as
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Where i＝1,2 denotes node number, t iu 、 t iv 、 t iw and t xi denotes the nodal displacement

increment from time t to t t  , t t
t iu

 、t t
t iv

 、t t
t iw

  and t t
t xi  denotes the nodal acceleration at

time t t  . All of the above variates are measured in the configuration at time t, see Figure 1.
Equation (3) can be expressed as the matrix form

 Tt t e t t e
t t t   +a M aA (4)

Where tM is the elemental concentrated mass matrix in the configuration at time t, e
ta is the
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nodal general displacement increment vector, see Equation (5), t t e
t

+ a is the nodal general

acceleration vector at time t t 

 T1 2
e e e

t t ta a a ( 5 )

Substituting Equation (4) into (1) and using the traditional derivation, the following equation
can be obtained

   e t t e t t t
t t t L t G t t e t

   M a K K a P P (6 )

Where tM is the elemental concentrated mass matrix, t
t LK is the linear stiffness matrix,

t
t GK is the geometrical nonlinear stiffness matrix, and t

tP is the nodal internal force

vector

Numerical example

The problem considered here is a dynamic buckling analysis of a circular arch subjected to a

uniformly distributed step load (see Figure 2). In the analysis, the ratio of time step over

fundamental period / ft T is approximately 1/ 70 , which is identical with the ratio adopted by

Bathe et al. [4]. Figure 3 compares the displacement response predicted in the present study with the

results of Bathe et al. [4], Humphreys [5], Noor and Knight [6]. In that figure, the deflection ratio

 , the time parameter  , and the load parameter P are defined as:
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where w is the average normal deflection at arch top.
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Figure 2 A simply supported shallow arch subjected to a uniformly distributed step load
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In Ref. [4], the dynamic snap-through buckling of the arch is described as a relatively large

increase in deflection over a relatively short period of time and a noticeable change in the

equilibrium position. The present results are compared with those in literatures in loading cases of

0.205P  and 0.25P  in Fig. 14, from which one can conclude that the critical buckling load

predicted by the present method lies between 0.195P  and 0.205P  , which is slightly lower

than 0.210 ~ 0.215P  reported by Humphreys [5], while slightly higher than 0.190 ~ 0.200P 

reported by Bathe et al. [4]. Moreover, as observed by Humphreys [5] that: once the arch has

popped through, it just oscillates about an equilibrium position. Further increases in loading do not

appreciably change the maximum deflection, but just simply accelerate the buckling occurrence.

Figure 3 Dynamic snap-through of a shallow arch

Summary

In this paper, the governing equation of dynamic analysis for frame structures is derived, with
geometric nonlinearity considered. In the process of derivation, the updated Lagrange format is
adopted and the elemental equilibrium equation is established at current configuration and then
transformed into the initial configuration. To simplify the calculation of mass matrix, it is assumed
that the beam’s mass is only related with its rigid configuration. In other words, the mass effect due
to the beam’s deformation is ignored. Finally, a numerical example about dynamic buckling
analysis of a circular arch subjected to a uniformly distributed step load is presented and discussed
detailedly, demonstrating the validity and accuracy of the present method.
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