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Abstract 

In this paper, we propose a generalized form of Sichel distribution which is obtained by mixing the Poisson 
distribution with the extended generalized inverse Gaussian distribution. This distribution models over dispersed, 
zero-inflated and heavy-tailed count data sets. These characteristics are examined with respect to the dispersion, 
zero-inflation and the third central moment inflation indices. Examples are provided to compare the extension with 
several other existing models including the Poisson-inverse Gaussian and the Sichel distributions. 

Keywords: Poisson distribution; extended generalized inverse Gaussian distribution; overdispersion; zero-inflation; 
long-tailed distributions. 
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1. Introduction 

It is well known that count data often shows over dispersion relative to Poisson distribution for which 
variance equals the mean. Over dispersion means that the variance is greater than the mean and a common 
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measure for it is the index of dispersion. The over dispersion can be due to various situations, for instance, 
unobserved heterogeneity in the data, or having extra zeros than produced by the model. Mullahy [15] 
demonstrated that unobserved heterogeneity, commonly assumed to be the source of over dispersion in the 
count data model, have predictable implications for the probability structures of such models. One way to take 
care of the heterogeneity is by way of mixture models. In the case of the mixed Poisson distribution, the mean 
θ  of the Poisson distribution is considered as a random variable with an appropriate probability structure.  

The simplest choice of the distribution of θ  is the gamma density, resulting in a negative binomial 
distribution (NB) which is introduced by Greenwood and Yule [5]. Some generalizations of the NB have been 
studied by applying a generalized gamma distribution resulting in a generalized form of NB, see Gupta and 
Ong [7] and the references therein. Other choices for the distribution of θ  include the inverse Gaussian and 
the generalized inverse Gaussian (GIG), giving rise to the Poisson-inverse Gaussian (PIG) and Poisson-
generalized inverse Gaussian or Sichel (PGIG) distribution respectively, see Refs. 1, 10, 19 and 23 for more 
details. The Sichel distribution is a long-tailed distribution that is found to be suitable for highly skewed data 
and it has been used, amongst others, to model insurance claim counts, protein abundance, word frequency in 
a text and consumer purchase behaviour. In addition to the mixing distributions mentioned above, various 
other distributions such as the lognormal, Lindley and shifted gamma distributions have been used to obtain 
mixed Poisson distributions; for more examples and illustrations, see Refs. 7, 11, 14 and 16. 

In this paper, we consider the distribution of θ  as that of extended generalized inverse Gaussian (EGIG). 
This distribution is briefly mentioned by Jørgensen [12] and further studied by Gupta and Viles [8], [9]. The 
EGIG model has one additional parameter (δ ) than the generalized inverse Gaussian (GIG) model having 
three parameters, see Ref. 12. Gupta and Viles [9] have provided examples to illustrate that the EGIG model 
fits the data better than the GIG model. In the same paper, they have also shown the importance of the 
additional parameter δ . We call the resulting mixed Poisson-EGIG distribution as the generalized Sichel 
distribution. This includes the PGIG distribution as a special case. 

The work in the present paper is motivated by the fact that there are a number of count frequency data sets 
with very high zero counts or very long right tails which may not be adequately fitted by existing mixed 
Poisson models. For high zero counts it is customary to use a zero-inflated model if structural zeros are 
involved. Based on Shaked’s [22] Two-Crossings Theorem, a mixed Poisson distribution, relative to the 
Poisson distribution, has a higher probability for the zero count and a longer right tail.  This elevation of 
probability for zero counts and tail lengthening will vary according to the mixing distributions considered. We 
shall show that the proposed generalized Sichel distribution fits better than the PGIG and other well-known 
mixed Poisson distributions when the data has high zero counts and/or a long tail. This is illustrated with three 
data sets with high zero counts but different tail lengths. Since this proposed distribution contains the NB, 
PIG and Sichel distributions as special cases, an advantage of this generalized Sichel distribution is that it can 
eliminate the need of piece-wise treatment of these distributions when fitting a data set with high zero counts 
and/or long right tail.    

The organization of this paper is as follows: we present the generalized Sichel distribution in Section 2. In 
Section 3, the shape and properties of the generalized Sichel distribution are discussed. Statistical inference 
procedures are presented in Section 4 and methods for computing the estimates of the parameters are 
indicated. Hypothesis testing procedures are developed for testing the hypothesis 1:0 =δH  i.e. the data 
follows a Sichel distribution. Section 5 contains the fitting of the proposed model to a simulated data set and 
two well-known data sets from the literature. Finally, some conclusion and comments are presented in Section 
6. 
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2. The Generalized Sichel Distribution 

Let Y be a random variable with support on nonnegative real numbers. Then the probability density function 
of the extended generalized inverse Gaussian (EGIG) distribution is given by 
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where )(zKν is the modified Bessel function of the third kind with index ν . Here we follow the notation 
adopted by Gupta and Viles [9]. We adopt a similar domain of variation for the parameters to that given by 
Jørgensen [12], that is ℜ∈λ λδ Ω∈),,( ba , where 
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When 1=δ , the EGIG model reduces to the generalized inverse Gaussian (GIG) model which has been 
studied in detail by Jørgensen [12]. Other special and limiting cases of Eq. (1) include the inverse Gaussian 
distribution ( 5.0,1 −== λδ ), the gamma distribution ( 1=δ , b = 0 and 5.0,1 −== λδ ), the Weibull 
distribution and the exponential distribution. 

 
Definition 2.1 (Generalized Sichel distribution) Suppose X is a discrete random variable and Θ|X  ~ 
Poisson(θ ), where Θ  is a nonnegative real valued random variable with pdf )(θf  given by Eq. (1). Then X 
has the generalized Sichel distribution with probability mass function (pmf) given by  
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The generalized Sichel probabilities may be computed from Eq. (2) by numerical integration or by using the 
infinite series form in Eq. (3) where computation of the )(zKν is facilitated by the recurrence relation 

)()()/2()( 11 zKzKzzK −+ += ννν ν . For a discussion on issues concerning computation with recurrence 
formulae see Ref. 17. 
 

The probability generating function (pgf) of the generalized Sichel distribution is given by 
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The generalized Sichel distribution has mean 
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The special case 1=δ  gives rise to the Sichel distribution. Furthermore, when 1=δ and 5.0−=λ , we 
obtain the PIG distribution. The Poisson-Gamma (or NB) distribution is obtained from Eq. (2) when 1=δ , b 
= 0 and 0>λ . These special cases are derived based on the probability structure of the EGIG model. The 
extra parameter δ adds flexibility to the shape of the count distribution. The effect of varying the parameter 
δ  on the index of dispersion XID  is illustrated in Figure 1 below. 
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                                                         (a)                                                                                             (b) 

Fig. 1  Plot of index of dispersion versus δ (a) a = b = 0.95 , (b) a = 1.0, b = 0.1; λ = -0.5 
 

3. Shape and Properties of the Generalized Sichel Distribution 

The generalized Sichel distribution is a flexible model which is able to model data with zero-inflation, over 
dispersed and long-tailed data. Three examples of the generalized Sichel pmf plots are given in Figure 2 to 
illustrate the versatility of the shape of the distribution. 

We examine the shape of the generalized Sichel distribution in terms of the zero-inflation index and the 
third central moment inflation index as defined by Puig and Valero [20]. For the generalized Sichel 
distribution, both the zero-inflated and the central moment indices are dependent on the mean and they are 
obtained using numerical computation. 
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3.1. Zero-inflation index 

The zero-inflation index of a non-negative integer random variable X with mean µ and proportion of zeros p0 
is defined as µ/)log(1 0pzi +=  (see [20]). The Poisson random variable has a zero-inflation index of 0, 
and a zero-inflated random variable will have a positive zero-inflation index. It is known that any mixed 
Poisson random variable is zero-inflated. Thus it is of interest to know the amount of zero-inflation. 

We plot the zero-inflation index versus index of dispersion for the negative binomial (NB), Poisson 
inverse Gaussian (PIG) and generalized Sichel (GS) distributions in Figure 3. The zero-inflation index for NB 
and PIG are independent of the mean of the distribution and it can be expressed as )1/()log(1 IDID −+  and 

)1/()1)(2( −−− IDIDID , respectively, where ID is the index of dispersion. We consider the cases when 
mean = 5 and mean = 15 for the generalized Sichel distribution, representing small and large mean, 
respectively. When over dispersion is small, all three distributions are similar. The zero-inflation index of the 
generalized Sichel distribution increases with the value of its mean. When the mean is small, the generalized 
Sichel’s zero-inflation index is closer to that of the PIG than the NB distribution. In general, the generalized 
Sichel distribution has the flexibility of having a larger zero-inflation index than that of the PIG. The 
generalized Sichel distribution is flexible in modelling the presence of extra zeros, since it has a zero-inflation 
index which can be higher than the NB distribution. 
 

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

k

P
r(X

=k
)

 

 

a = b = 0.95, delta = 0.5,
lambda = -0.5

 

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

k

P
r(

X
=

k)

a = b = 0.95, delta = 1.5,
lambda = -0.5

 
Fig. 2 Probability mass function (pmf) plots of the generalized Sichel distribution 
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Fig. 3 Zero-inflation index versus index of dispersion 

3.2. Discriminant ratio 

Ong and Muthaloo [18] have discussed the role of the discriminant ratio which is defined as 
)(/)1()( kXPkXPkQ =+== , for k = 0, 1, 2, 3, …, in determining the flexibility of the distributions 

which they proposed for long-tailed data. The ratio has a limiting value of 1)( →kQ  for long-tailed 
distributions. Figure 4 gives the graphs of Q(k) versus k for several values of the parameter δ , holding other 
parameters fixed. 

In Figure 4(a), we compare the graph of Q(k) versus k for the PIG distribution (δ = 1, λ  = -0.5) and the 
generalized Sichel distribution. By varying the value of δ , the discriminant ratio varies considerably 
especially at large values of k. The difference is most prominent for k larger than 10.  

From the graphs in Figure 4(b), we note that the generalized Sichel distribution has a longer tail compared 
to the Sichel distribution. The trend is similar to that in Figure 4(a). As such, the parameter δ  adds flexibility 
to the generalized Sichel distribution, enabling the distribution to model data with a very long tail. 

3.3. Third central moment inflation index 

The third central moment inflation index of a nonnegative discrete random variable X describes the skewness 
of the distribution and is obtained as ( ) 1/33 −= µµκ , where 3µ  is the third central moment of X. This index 
takes the value 0 for the Poisson distribution.  

In Figure 5 we plot the third central moment inflation index versus over dispersion for the NB, PIG and 
generalized Sichel (GS) distributions. For the GS distribution, the plot is given for three different values of 
the mean, i.e. 5, 10, 15. The index for the NB and PIG distributions take the values 2(ID)2 - ID - 1 and 3(ID)2 
– 3(ID), respectively. The coefficient of skewness is positive for all three distributions. For small over 
dispersion, all of the distributions are similar to each other. As the index of dispersion increases, the 
coefficient of skewness of all the distributions increases. For the GS distribution, as the mean increases, the 
coefficient of skewness decreases. Moreover, GS distribution with larger means are closer to the NB than the 
PIG. The GS distribution with a small mean has more probability mass distributed at the tail extending to the 
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right relative to the NB and PIG distributions. This further suggests that the generalized Sichel distribution is 
able to model long-tailed data better. 

 

 
Fig. 4(a) Discriminant ratio when a = b = 0.95, λ  = -0.5 

 
Fig. 4(b) Discriminant ratio when a = b = 0.95, λ  = 0.2 

 

4. Statistical Inference 

4.1. Parameter estimation 

Maximum likelihood (ML) estimation is used to estimate the unknown parameters ),,,( λδba=ω of the 
generalized Sichel distributions, given the observations from the sample of interest. The ML estimates of the 
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generalized Sichel distribution is defined as )(logmaxarg)ˆ,ˆ,ˆ,ˆ(ˆ ωω ω Lba T == lδ , where log L is the log-

likelihood function given by )]([loglog
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 and kf  is the observed frequency of count k in 

the sample.  
 

 
Fig. 5 Third central moment inflation index versus index of dispersion. 
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Since the pmf of the generalized Sichel distribution is complicated, ML estimation can be done using 
numerical optimization methods such as the simulated annealing algorithm discussed by Goffe et al. [4]. 
Simulated annealing is a stochastic-type global optimization algorithm which is able to work with functions 
which are not smooth or having many local maxima or minima.  

4.2. Akaike Information Criterion 

The Akaike Information Criterion (AIC) is a model selection criterion to choose from several competing 
models for a particular data set. It is calculated as AIC = -2 log L + 2p, where log L in the formula is the 
maximized log-likelihood value and p is the number of parameters. The AIC penalizes the model with more 
parameters. Based on this criteria, the model which the smallest AIC value is selected as the best model. 

4.3. Hypothesis testing 

The generalized Sichel distribution nests the Sichel distribution. As such, of particular interest would be 
hypothesis test for the additional parameter, which we shall name as the Sichel test. For the Sichel test, the 
hypotheses can be written as 

 1:0 =δH      vs    1: ≠δAH  (9) 

Hypothesis testing procedures such as the likelihood ratio test, score test and Wald test can be performed 
based on the likelihood function. Under the null hypothesis, the likelihood ratio test and score test are 
asymptotically equivalent. We employ the score test which has the advantage of being simpler to compute 
since it requires only the restricted maximum likelihood estimates, which corresponds to those of the Sichel 
model for the Sichel test in Eq. (9). The score test statistic is )()()( 00

1
0 ωωω UJUT −= , where the score 
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vector )/log,/log,/log,/log()( lδ ∂∂∂∂∂∂∂∂=⋅ LLbLaLU is being evaluated at the null hypothesis, 

i.e. Tba )ˆ,1,ˆ,ˆ(0 λ=ω the restricted maximum likelihood estimates. The partial derivatives aL ∂∂ /log , 
bL ∂∂ /log , δ∂∂ /log L  and λ∂∂ /λog L are given by Eqs. (5), (6), (7) and (8), respectively. In general, 

)( 0ωJ  is either the expected or observed information matrix, also evaluated at the null hypothesis. In our 
case for the generalized Sichel distribution, we use the observed information matrix because the expected 
information matrix is intractable. The observed information matrix is the matrix of second partial derivatives 

of the log-likelihood function and its elements are obtained as [ ] 
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is the element in the r-th row and s-th column and pω  is the p-th element in the parameter vector 
),,,( λδba=ω . The score test statistic T has an asymptotic chi-square distribution with one degree of 

freedom. 
 

5. Applications  

To examine the suitability of the model for zero-inflated, over dispersed and long-tailed data sets, we fit one 
simulated data set and two well-known data sets from the literature with our proposed model and compare it 
with related mixed Poisson distributions and zero-inflated Poisson distribution. In terms of mixed Poisson 
distributions, we compare the model fitting of the generalized Sichel distribution with the negative binomial 
(NB), Poisson-inverse Gaussian (PIG) and Poisson-generalized inverse Gaussian (Sichel) (PGIG) 
distributions. The NB, PIG and PGIG distributions can be derived as a special case of the generalized Sichel 
distribution. The pmf of the NB, PIG and PGIG distributions used in this model fitting are given below.  
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Besides the mixed Poisson distributions, we also fitted the two real data sets to the zero-inflated Poisson 
(ZIP) distribution since the high proportion of zeros in both data sets suggests that some of these may be 
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structural zeros. The pmf of the ZIP distribution is defined as λ−−+== eppXP )1()0( and for k = 1, 2, 3, 

..., 
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The ML estimates together with their maximized log-likelihoods are presented in Table 1. The standard 
error for the parameters of the generalized Sichel distribution are obtained from the observed information 
matrix defined in Section 4.3.  The observed frequency and the fitted distributions are presented in Tables 2, 3 
and 4, together with the degrees of freedom, 2χ -statistic, p-values and AIC values. The degree of freedom is 
equal to )1( −− pt where t = number of classes and p = number of parameters. 

Table 1: Maximum Likelihood Estimates and Log-likelihood Function Values 

Data Set Maximum Likelihood Estimates and Log-likelihood Values 
 NB PIG PGIG Generalized Sichel 

(standard error) 
Zero-inflated 

Poisson 
Simulated data α = 0.2989 β̂ = 33.9736 

L = -13697.53 
 
 

α = 1.3198 
θ̂  = 0.9983 

L = -13836.28 
 

α = 0.3576 
θ̂ = 0.9816 γ̂ = -0.0774 

L = -13654.18 
 

a = 0.2058 
(0.0000) 

b̂ = 0.0624 
(0.0305) 
δ̂ = 0.5750 
(0.0057) 
λ̂ = 0.2632  
(0.0385) 

L = -13650.23 

N/A 

Tröbliger’s data 
(1961) on number of 

claims 

α = 1.1514 β̂ = 0.1246 
L = -10180.29 

 
 

α = 1.2443 
θ̂  = 0.2055 

L = -10178.42 
 

α = 1.3138 
θ̂ = 0.4060 γ̂ = -1.8177 

L = -10177.62 
 

â = 1.1407 (1.3912) 
b̂ = 0.1514 (0.2447) 
δ̂ = 1.0560 (0.4198) 
λ̂ = -1.9458 (0.8237) 

L = -10177.60 

λ = 0.2538 p̂ = 0.4348 
L = -10190.58 

Accident injuries 
data  

α = 2.0361 β̂ = 0.3474 
L = -11485.48 

 
 

α = 2.4604 
θ̂ = 0.4330 

L = -11466.82 
 

α = 2.7035 
θ̂ = 0.9671 

 γ̂  = -3.4594 
L = -11454.22 

 

â = 0.0027 (0.0067) 
b̂ = 0.0715 (0.1170) 
δ̂ = 3.0000 (1.3142) 
λ̂ = -2.1791 (0.2218) 

L = -11450.78 

λ = 0.9135 p̂ = 0.2257 
L = -11613.88 

 

5.1. Simulated data 

In this section, we illustrate the application of the generalized Sichel distribution with a simulated data set 
with very long tail. The Malayan butterfly data is a well-known example in the literature on long-tailed data, 
see Ref. 6. However, the frequencies after k = 25 are grouped hence the individual observations at the tail is 
lost. We simulate a long-tailed data using the estimated parameters of the Malayan butterfly data and compare 
the model fit of the NB, PIG, PGIG and generalized Sichel distributions. The mean and variance of the 
simulated data set are 10.6990 and 22.7307, respectively. The minimum value of the data set is 0, whilst the 
maximum is 224. A plot of the simulated data is given in Figure 6. The data set has a high zero count and a 
very long tail. During the model fitting, frequencies after k = 50 are grouped. The model fitting results are 
presented in Table 2. For presentation purposes, observations after 20 have been displayed as groups. 

From the table, the generalized Sichel distribution gives the best fit to the data in terms of both chi-square 
goodness-of-fit statistic and AIC value. The generalized Sichel distribution fits well on not only the 
observations at the tail but also the zero counts.  
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Table 2: Fit of simulated data set 

k Observed frequency Expected frequency 
Generalized Sichel NB PIG PGIG 

0 1643 1643.24 1727.76 1409.66 1637.31 
1 625 626.66 501.73 928.69 655.59 
2 395 374.13 316.54 537.70 371.88 
3 227 264.38 235.63 335.58 256.15 
4 198 202.79 188.78 228.84 194.40 
5 168 163.26 157.67 167.20 156.01 
6 142 135.72 135.26 128.51 129.80 
7 117 115.43 118.24 102.53 110.73 
8 111 99.87 104.79 84.16 96.23 
9 72 87.58 93.87 70.64 84.83 
10 101 77.64 84.79 60.35 75.62 
11 66 69.44 77.12 52.31 68.03 
12 70 62.57 70.53 45.90 61.66 
13 63 56.74 64.82 40.68 56.25 
14 61 51.73 59.82 36.37 51.59 
15 34 47.39 55.39 32.76 47.53 
16 46 43.60 51.45 29.71 43.98 
17 38 40.27 47.92 27.09 40.83 
18 33 37.31 44.73 24.84 38.03 
19 39 34.67 41.85 22.87 35.52 
20 32 32.31 39.23 21.15 33.26 

21 to 30 223 232.85 287.42 149.43 244.71 
31 to 40 132 137.61 169.78 88.51 148.87 
41 to 49 80 82.03 97.87 54.62 89.89 

50 or more 284 280.77 227.02 319.91 271.30 
Total 5000 5000 5000 5000 5000 

Number of classes 51 51 51 51 51 
Chi-square  54.4979 144.4311 447.4297 60.8280 

Degree of freedom  46 48 48 47 
p-value  0.1827 0.0000 0.0000 0.0848 

AIC  27308.47 27399.05 27676.57 27314.35 

5.2. Real data 

We present in Table 3 the fit for Tröbliger’s data which has been published in 1961 (as cited by Gathy and 
Lefèvr [3]) on the frequency of the number of claims. This data set has an 87% proportion of zeros. It has a 
mean of 0.1434 with standard deviation 0.4031, thus giving a dispersion index of 1.1328. For this data, the 
generalized Sichel distribution provides a good fit amongst the four mixed Poisson distributions based on the 
p-value of the chi-square goodness-of-fit test. We note that the PIG and PGIG (Sichel) distributions, which 
are simpler, also give a good fit for this over dispersed data set with small counts. In this case, fitting the 
generalized Sichel distribution eliminates the need for piece-wise treatment in the empirical modelling of the 
data. 
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Fig. 6. A plot of the frequency distribution of the simulated data 

Table 3: Fit of Trobliger's data 

Number of 
Claims 

Observed 
Frequency 

Expected Frequency 

Generalized Sichel NB PIG PGIG ZIP 
0 20592 20593.33 20597.11 20597.30 20593.00 20592.01 
1 2651 2647.44 2627.56 2633.40 2647.52 2624.01 
2 287 291.39 313.16 303.63 291.69 332.94 
3 41 38.52 36.45 38.37 38.50 28.16 
4 7 6.52 4.19 5.34 6.50 1.79 
5 0 1.35 0.48 0.80 1.35 0.09 
6 1 0.32 0.05 0.13 0.32 0.00 

7 or more 0 0.12 0.01 0.02 0.12 0.00 
Total 23579 23579 23579 23579 23579 23579 

Number of classes 8 8 8 8 8 
Chi-square 3.0364 21.7883 8.6005 3.1599 286.5225 

Degree of freedom 3 5 5 4 5 
p-value 0.3860 0.0006 0.1261 0.5314 0.0000 

AIC 20363.21 20364.57 20360.83 20361.25 20385.16 

The fit for data on number of injuries sustained in 10,000 accidents in the United States in 2001 (as cited 
in Kadane et al. [13]) is presented in Table 4. It has a mean of 0.7073, standard deviation 1.0020 thus yielding 
a dispersion index of 1.4194. Its proportion of zeros is at 54%. The generalized Sichel distribution gives a 
significantly better fit on this data in terms of its AIC values and chi-square goodness-of-fit statistic, 
compared to the other mixed Poisson distributions considered here. 

All of the data sets cited here do not fit well to the zero-inflated Poisson distribution (the last column of 
Tables 3 and 4).  This is due to a poor fit on the counts at the right tail of the data although it fits the zero 
counts very well. We also attempted to fit the data sets with the zero-inflated negative binomial (ZINB) 
distribution. However, the iterative method used to estimate the ZINB parameters failed to converge. This 
convergence failure is a common problem with the ZINB and it was also noted by Famoye and Singh [2]. 
Moreover, we observe that for all of the data sets cited here, the negative binomial predicted a higher 
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frequency of zeros than which is observed, hence it may not be necessary to fit the ZINB model at all. As 
such, the generalized Sichel model can serve as an alternative to model zero-inflated count data. 

5.2.1 Hypothesis testing 

The hypothesis testing results for the Sichel test are presented in Table 5. At a significance level of α = 0.05, 
the null hypothesis is not rejected for the Trobliger's data but is rejected for the accident injuries data. This 
conclusion corroborates the analysis of our model fitting results discussed in the preceding section. 

Table 4: Accident Injuries Data 

  Expected Frequency 

Injuries Observed 
Frequency Generalized Sichel NB PIG PGIG ZIP 

0 5363 5389.30 5449.36 5446.28 5408.54 5363.00 
1 3091 3025.28 2860.61 2900.77 2984.26 2837.12 
2 1008 1059.84 1119.59 1086.47 1072.46 1295.85 
3 348 332.94 388.34 372.34 345.44 394.59 
4 105 111.96 126.06 126.44 114.36 90.11 
5 46 43.16 39.23 43.60 41.47 16.46 
6 19 18.89 11.86 15.35 16.81 2.51 
7 9 9.04 3.51 5.52 7.59 0.33 
8 7 4.56 1.02 2.02 3.76 0.04 
9 2 2.37 0.29 0.75 2.02 0.00 

10 1 1.25 0.08 0.28 1.15 0.00 
11 or more 1 1.39 0.03 0.18 2.13 0.00 

Total 10000 10000 10000 10000 10000 10000 
Number of classes 12 12 12 12 9 

Chi-square 6.9124 136.2590 47.9200 13.3075 3703.5929 
Degree of freedom 7 9 9 8 6 

p-value 0.4381 0.0000 0.0000 0.1017 0.0000 
AIC 22909.56 22974.97 22937.64 22914.45 23231.76 

Table 5 Score test results 

Data Set Score Test Statistic  p-value 
Tröbliger’s data (1961) on number of claims 0.0566 0.8120 

Accident injuries data 4.2257 0.0398 
 

6. Some Conclusion and Comments 

The generalized Sichel distribution presented in this paper, is an extension of the Sichel (PGIG) distribution. 
It has one additional parameter, δ , which makes it more flexible  for modelling count data sets having zero-
inflation as well as overdispersion. The proposed distribution has an advantage of eliminating a piecewise 
treatment when fitting a data set to the NB, PIG and PGIG distributions since these are its special cases. We 
hope that the model, proposed in this paper, will provide a viable alternative to analyze count data sets which 
exhibit similar characteristics. 
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