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The tail dependence describes the limiting proportion of exceeding one margin over a certain threshold given
that the other margin has already exceeded that threshold. In this paper, we obtain the limit tail dependence
coefficient for the generalized hyperbolic distribution.
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1. Introduction

The generalized hyperbolic distribution was introduced in [3], and has been developed by many
authors, see among others [17], [12], [16], [2], especially in relation with several applications in the
Finance, see [15], [6]. This family contains and generalizes many familiar distributions such as the
Student t, Gaussian, variance gamma, Cauchy and others.

The aim of this paper is to investigate the upper tail dependence coefficient in the case of the
generalized hyperbolic distribution. More precisely, a bivariate random variable X = (X1,X2) fol-
lows a generalized hyperbolic distribution GH(λ ,α,β ,δ ,γ) if

X1 = µ1 +θ1W1 +
√

W1Z1, X2 = µ2 +θ2W2 +
√

W2Z2, (1.1)
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where Z = (Z1,Z2) ∼ N2(0,Σ), is the bivariate normal distribution with mean 0 and a correlation
matrix Σ and W = (W1,W2) ∼ GIG(λ ,δ ,γ), is the generalized inverse gaussian with probability
density function

fW (x) =


( γ

δ
)λ

2kλ (δγ)x
λ−1 exp(−1

2(γ
2x+ δ 2

x ) if x > 0,

0 otherwise.

where γ =
√

α2−θ 2, λ ∈R,δ > 0 and γ ≥ 0. The probability density function of GH(λ ,α,β ,δ ,µ)

is given by

fX(x) =
(α2−θ 2)

λ

2 k
λ− 1

2
(α
√

δ 2 +(x−µ)2)exp(θ(x−µ))
√

2παλ− 1
2 kλ (δ

√
α2−β 2)δ λ (

√
δ 2 +(x−µ)2)−λ+ 1

2
,

where Kλ is the modified Bessel function of the third kind, given by

Kλ (x) =
1
2

∫
∞

0
exp(− x

2
(y+

1
y
))yλ−1du, for x > 0,λ ∈ R, (1.2)

see for instance, [7], [11]. [1] have given general results for upper tail dependence of skewed
grouped t-distributions in the case where its degrees of freedom are different, i.e. for a random
variable X = (X1,X2), we can write

X1 =
θ1

G−1
µ (U)/µ

+
Z1√

G−1
µ (U)/µ

, X2 =
θ2

G−1
ν (U)/ν

+
Z2√

G−1
ν (U)/ν

, (1.3)

where Z = (Z1,Z2) is a bivariate normal distribution with mean 0 and correlation matrix Σ =(
1 ρ

ρ 1

)
, with correlation coefficient ρ and Z is independently distributed of the standard uniform

random variance U . The parameter θ = (θ1,θ2)
′ ∈R controls the asymmetry of the distribution and

τ,ν are positive constants. The function G−1
η (.) is the inverse distribution function of Γ(η

2 ,
η

2 ) with
η > 0.

[9] have particularly studied a special case of the skewed grouped t-distributions, see [1], when
η = ν = τ in (1.3), which gives the case of the skew t-distribution, introduced in [5]. This model
can be defined for X = (X1,X2) by

X1 =
θ1

G−1
τ (U)

+
Z1√

G−1
τ (U)

, X2 =
θ2

G−1
ν (U)

+
Z2√

G−1
ν (U)

,

where Z1,Z2,Σ,τ and ν are defined previously.
The coefficient of the lower tail dependence for a bivariate random vector X = (X1,X2), with

marginal distributed functions F1 and F2 is defined
as λL = limu→0P

(
X1 ≤ F(−1)

1 (u)|X2 ≤ F(−1)
2 (u)

)
if this limit exists, where F−1

1 and F−1
2 are the

generalized inverse functions of F1 and F2, see [10]. The coefficient of the upper tail dependence
of a random vector X can be defined similarly as λU = limu→1P

(
X1 ≥ F(−1)

1 (u)|X2 ≥ F(−1)
2 (u)

)
or

equivalently

λU = lim
x→+∞

P
(

X1 ≥ F(−1)
1 (F2(x))|X2 ≥ x

)
. (1.4)
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2. Main result

The aim of this paper is to provide an analytic result of the tail dependence coefficient of the gener-
alised hyperbolic model. We will consider the upper tail dependence for X in the model (1.1), using
a method deriving from an equivalent form of (1.4) for λU :

λU = lim
x→+∞

P
(

X1 ≥ F(−1)
1 (F2(x))|X2 = x

)
+ lim

x→+∞
P
(

X2 ≥ F(−1)
2 (F1(x)|X1 = x

)
,

see [13].

Theorem 2.1. The upper tail coefficient of the vector (X1,X2) defined in (1.1) is given by:
1) If θ1 = θ2 = 0, then

λU = 1−
∫

∞

0
gλ ,γ,δ (t)dt,

2) If θ1,θ2 > 0, then

λU = 1,

3) If θ1 = θ2 = θ < 0, then

λU = 1.

Proof. Let θ1 = θ2 = 0. For x→ a, we use the notation f (x) ∼ g(x) if f (x)
g(x) → 1 and f (x) ∝ g(x)

if there exists c > 0, such as g(x) = c f (x). Let h(x) = F−1
1 ◦F2(x), g(x) =

√
Q−1

λ1,δ1,γ1
◦Qλ2,δ2,γ2(x

2)

and S2 = Q−1
λ2,δ2,γ2

(U).
Equation (1.1) can be written as

X1 = µ1 +
θ1

(g(S))2 +
Z1

g(S)
, X2 = µ2 +

θ2

S2 +
Z2

S
,

where µ1, µ2, Z1 and Z2 are defined previously. The upper tail dependence coefficient can be rewrit-
ten as

λU = lim
x→∞

P((X1 ≥ h(x),X2 ≥ x)
P(X2 ≥ x)

,

= lim
x→∞

∫
∞

h(x)
∫

∞

x fX1,X2(s, t)dsdt

P(X2 ≥ x)
,

We use the l’Hopital’s rule to obtain

λU = lim
x→∞

−
∫

∞

h(x) fX1,X2(s,x)ds−h′(x)
∫

∞

x fX1,X2(h(x), t)dt

− f2(x)
,

= lim
x→∞

(
P(X1 ≥ h(x)/X2 = x)+h′(x)

f1(x)
f2(x)

P(X2 ≥ x/X1 = h(x))
)
. (2.1)

The distribution function QW2 of the generalized inverse gaussian is given by

QW2(x) =
∫ x

∞

( γ

δ
)λ

2kλ (δλ )
tλ−1 exp(−1

2
(γ2t− δ 2

t
)dt.
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It follows that the corresponding distribution function QW2 satisfies, as x → ∞, 1−QW2(x) ∼
cλ ,γ,δ

xλ

λ
exp(−1

2 γ2x), where cλ ,γ,δ =
( γ

δ
)λ

2kλ (δλ ) . Then

QW2(x) = 1− cγ,δ
xλ

λ
.exp(−1

2
γ

2x).

We use Lemma 3.1, see [1], to invert the last equation and obtain, as u→ 1,

Q−1
W2

(u) =− log(1−u)
γ2/2

.

Hence for x→ ∞

g(x) = mγ2,δ2x2λ2 exp(−1
2

γ
2
2 x2), where mλ2,γ2,δ2 = 2

cλ2,γ2,δ2

λ2γ2
2

.

The density f1 of the generalized hyperbolic distribution with parameters λ ,α,θ ,δ ,γ is given by

f1(x) = `λ (α,θ ,δ )k
λ− 1

2
(α
√

δ 2 +(x−µ)2)(
√

δ 2 +(x−µ)2)λ− 1
2 exp(θ(x−µ)),

where `λ (α,θ ,δ ) = (α2−θ 2)
λ
2

√
2πα

λ− 1
2 δ λ kλ (δ

√
α2−β 2)

. It follows that the corresponding distribution function

F1 satisfies, as x→ ∞,

1−F1(x)∼
∫

∞

x
`λ (α,θ ,δ )tλ−1/2k

λ− 1
2
(α
√

δ 2 +(t−µ)2)exp(θ(t−µ))dt,

∼ dλ xλ exp(−(α−θ)x),

where dλ = π

2λα
`λ (α,θ ,δ ). Using the same lemma as above, for u→ 1, we can invert F1 and obtain

F−1
1 (u) = − log(1−u)

α−θ
. It follows that the strictly increasing function h(x) = F−1

1 ◦F2(x) satisfies, as
x→ ∞,

h(x)∼ (α−θ)x.

The derivative of h is equal to h′ = f2
f1◦h , and hence, as x→ ∞,

f1(x)
f2(x)

h′(x) =
f1(x)

f1 ◦h(x)
∼ (α−θ)1−λ exp(−(α−θ)x(1− (α−θ)).

Note that this quantity tends to zero for α < 1+ θ . Hence the second term in (2.1) goes to zero.
It remains to calculate the first term of the equation (2.1). The conditional density of S2 given X2

satisfies, by Bayes rule,

pS2|X2=x2
(t) ∝ pX2|S2=t(x2)pS2(t),

∝ t(λ−1/2)−1 exp(−1
2
(γ2t +

δ 2 + x2

t
).

Then S2|X2 = x2 ∼ GIG(λ −1/2,γ,
√

δ 2 + x2). Now, we compute the second term of (2.1).

P(X1 ≥ x1|X2 = x2) =
∫

∞

0
P(X1 ≥ x1|X2 = x2,s2 = t) fS2|X2=x2

(t)dt,

≥=
∫

∞

0
P(

1
g(
√

t)
(ρ
√

tx2 +(1−ρ
2)W )≥ x1)gλ ′,γ,δ ′(t)dt,
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where λ ′ = λ − 1/2, δ ′ =
√

δ 2 + x2 and W ∼N (0,1). We can re-express the right side of (2.1)
as limx→∞

∫
∞

0 P((1−ρ2)W ≥ f (x)g(t)−ρ
√

tx)gλ ′,γ,δ ′(t)dt. Using the dominated convergence the-
orem, we obtain λU = 1−

∫
∞

0 gλ ′,γ,δ ′(t)dt.
Let θ1,θ2 > 0 or θ1,θ2 < 0, For our quantitative developement we need the modified Bessel

function of the third kind, see [14], with index λ ∈ R:

Kλ (x) =
√

π

2x
exp(−x)

(
1+o(

1
x
)

)
, (2.2)

According to the equation (1.2), we have

Kλ+1(x)
Kλ (x)

= 1+
8λ +4

8x
+

32λ 2−8
(8x)2 +o

(
1
x3

)
, (2.3)

Kλ+1(x)Kλ−1(x)

(Kλ (x))
2 = 1+

1
x
+

64−256λ 2

(8x)3 +o
(

1
x4

)
. (2.4)

The marginal density of X1 is defined by

fX1(x1) =
k

λ− 1
2

(
δ 2 +(x1−µ1)

2,α2
)

√
2πkλ

(
δ 2,α2−θ 2

1

) eθ1(x1−µ1), (2.5)

where Kλ (δ
2,α2−β 2) =

∫
∞

0 xλ−1e−
1
2

(
(α2−β 2)x+ δ2

x

)
dx. The conditional density of X2.1 =X2|X1 = x1

is equal to

fX2|X1(x2|x1) =
fX1,X2(x1,x2)

fX1(x1)

=
kλ−1

(
δ 2 +a(x1,x2),α

2
)

√
2πk

λ− 1
2
(δ 2 +(x1−µ1)2,α2)

eθ2(x2−µ2),

where a(x1,x2) =
1

(1−ρ2)

(
(x1−µ1)

2 +2(x1−µ1)(x2−µ2)+(x2−µ2)
2
)
. Note that X2.1 has a gen-

eralised hyperbolic distribution. It is known that the conditional distribution of X2.1|W =w is normal
N(µ2 +θ2w,w), where W ∼ GIG

(
λ − 1

2 ,δ
2 +(x1 +µ1)

2,α2 +θ 2
2
)
.

The proof we propose here requires the use of the Chebyshev’s inequality, so we compute the
first two moments. We have

E(X2.1) = µ +θ2E(W )

= µ +θ2
δ 2 +(x1 +µ1)

2

α2 +θ 2
2

K
λ+ 1

2
((α2 +θ 2

2 )(δ
2 +(x1 +µ1)

2)

K
λ− 1

2
((α2 +θ 2

2 )(δ
2 +(x1 +µ1)2)

,

You can easily compute the variance of X2.1 from the variance decomposition formula and obtain

Var(X2.1) = θ 2
2

(
δ 2+(x1+µ1)

2

α2+θ 2
2

)2
[

K
λ+ 1

2
((α2+θ 2

2 )(δ
2+(x1+µ1)

2)

K
λ− 1

2
((α2+θ 2

2 )(δ
2+(x1+µ1)2)

]2

×
(

K
λ+ 3

2
((α2+θ 2

2 )(δ
2+(x1+µ1)

2)

K
λ− 1

2
((α2+θ 2

2 )(δ
2+(x1+µ1)2)

−1
)

+θ2
δ 2+(x1+µ1)

2

α2+θ 2
2

K
λ+ 1

2
((α2+θ 2

2 )(δ
2+(x1+µ1)

2)

K
λ− 1

2
((α2+θ 2

2 )(δ
2+(x1+µ1)2)

,
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By the Chebyshev’s Inequality, for all positive ε ,

P(|X2.1−E(X2.1)| ≥ ε |x1|)≤ Var(X2.1)

ε2|x1|2

= 1
ε2|x1|2

[
(δ 2 +(x1−µ1)

2)
(

α2+2θ 2
2

(α2+θ 2
2 )

3

)
+λ

(
α2+3θ 4

2
(α2+θ 2

2 )
4

)
+o
(

1
|x1|

)]
= o

(
1
|x1|

)
.

We will combine the variance of X2.1 with (2.3) and (2.4), as x1→−∞. This gives

P(E(X2.1)− ε |x1| ≤ X2.1 ≤ E(X2.1)+ ε |x1|)≥ 1−o
(

1
|x1|

)
, as x1→−∞,

Hence limx1→−∞P
(
X2 ≤ F−1

2 (F1(y))|X1 = x1
)
= 0 if

F−1
2 (F1(x1))< E(X2.1)− ε |x1|

=

(
µ2−

θ2

(α2 +2θ 2
2 )

2 + ε

)
x1 +λ

θ2

(α2 +2θ 2
2 )

2 +o
(

1
|x1|

)
,

We use the expectation of the random variable X2.1 and (2.3), as x1→−∞, to show

F1(x1)< F2

((
µ2−

θ2

(α2 +2θ 2
2 )

2 + ε

)
x1 +λ

θ2

(α2 +2θ 2
2 )

2 +o
(

1
|x1|

))
. (2.6)

Hence for i = 1,2,

Fi(x1) = P(Xi ≤ x1)

=
xλ− 3

2 e(θ
2
i +α2+θi)x1

2Kλ

(
δ 2,α2−θ 2

1

)(
θ 2

i +α2
)(λ−1/2)/2 (

θ 2
i +α2 +θi

) (1+o
(

1
|x1|

))
. (2.7)

By combining (2.7) and (2.6), we have

(
θ

2
1 +α

2 +θ1
)
>
(
θ

2
2 +α

2 +θ2
)µ2−

θ2√
θ 2

1 +b2
+ ε

 .

as ε > 0 is arbitrary, we obtain θ 2
1 +α2+θ1

θ 2
2 +α2+θ2

−
(

µ2− θ2
(α2+2θ 2

2 )
2

)
> 0. If θ1 = θ2 = θ ∈ R∗, then 1−

µ2 +
θ

(α2+2θ 2)2 > 0. Then limx1→+∞P
(
X2 ≥ F−1

2 (F1(y))|X1 = x1
)
= 1. Similarly, one can show that

limx1→+∞P
(
X1 ≥ F−1

1 (F2(y))|X2 = x1
)
= 0 and results in λU = 1. �

References
[1] K. Banachewicz and A. van der Vaart, Tail dependence of skewed grouped t-distributions. Statistics

and Probability Letters. 78 (2008) 2388-2399.
[2] O. E. Barndorff-Nielsen, and H. Christian, Infinite divisibility of the hyperbolic and generalized inverse

Gaussian distributions. Probability Theory and Related Fields, Springer. 38(4) (1977) 309-311.
[3] O. E. Barndorff-Nielsen, Exponentially decreasing distributions for the logarithm of particle size, Royal

Society of London. Proceedings A. Mathematical, Physical and Engineering Sciences. 353 (1977) 401-
419.

[4] J. Beirlant, Y. Goegebeur, J. Teugels and J. Segers, Statistics of Extremes: Theory and Applica-
tions,Wiley, Chichester. (2006).

Journal of Statistical Theory and Applications, Vol. 16, No. 3 (September 2017) 375–381
___________________________________________________________________________________________________________

380



[5] S. Demarta, A. J. McNeil, The t copula and related copulas, International Statistical Review. 73 (2005)
111-129.

[6] E. Eberlein and K. Prause, The generalized hyperbolic model: Financial derivatives and risk measures,
In Mathematical Finance-Bachelier Congress 2000, H. German, D. Madan, S. Pliska and T. Vorst (Eds).
(2002) 245-267.

[7] A. Erdelyi,W. Magnus, F. Oberhettinger and F. G. Tricomi, Bateman Manuscript Project: Tables of
Integral Transform, McGraw-Hill, New York. (1954).

[8] E. Jondeau, Asymmetry in tail dependence in equity portfolios.Computational Statistics & Data Anal-
ysis (2008).

[9] T. Fung and E. Seneta, Tail dependence for two skew t distributions, Statistics and Probability Letters.
80 (2010) 784-791.

[10] H. Joe, Multivariate Models and Dependence Concepts, Chapmann & Hall, London. (1997).
[11] B. Jorgensen, Statistical properties of the generalized inverse Gaussian distribution for log-linear and

stochastic volatility models, Lecture Notes in Statistics. (1982).
[12] A.J. McNeil, R. Frey and P. Embrechts, Quantitative Risk Management: Concepts, Techniques and

Tools, Princeton University Press. (2005).
[13] R. B. Nelsen, An Introduction to Copulas, Lecture Notes in Statistics, vol. 139. (1999).
[14] M. Paolella, Intermediate Probability: A Computational Approach, Wiley, Chichester. (2007).
[15] K. Prause, The Generalized Hyperbolic Model: Estimation Financial Derivatives and Risk Measures,

PhD diss., University of Freiburg. (1999).
[16] R. Schmidt, Tail dependence for elliptically contoured distributions, Mathematical Methods of Opera-

tions Research. 55 (2002) 301-327.
[17] S. Schlueter and M. Fischer, The weak tail dependence coefficient of the elliptical generalized hyper-

bolic distribution, Extremes. 15(2) (2012) 159-174.

Journal of Statistical Theory and Applications, Vol. 16, No. 3 (September 2017) 375–381
___________________________________________________________________________________________________________

381


