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1. Introduction

The Lindley distribution is a very well-known distribution that has been extensively used over the
past decades for modeling data in reliability, biology, insurance, finance and lifetime analysis. The
Lindley distribution was introduced by Lindley (1958) to analyze failure time data. The motiva-
tion for introducing the Lindley distribution arises from its ability to model failure time data with
increasing, decreasing, unimodal and bathtub shaped hazard rates. This distribution represents a
good alternative to the exponential failure time distribution which does not not exhibit unimodality
and bathtub shaped failure rates.

The need for extended forms of the Lindley distribution arises in many applied areas. The emer-
gence of such distributions in the statistics literature is only very recent. For some extended forms
of the Lindley distribution and their applications, the reader is referred to Kumaraswamy Lindley
(Cakmakyapan & Ozel, 2014), beta odd log-logistic Lindley (Cordeiro et al., 2015), generalized
Lindley (Nadarajah et al., 2011), quasi Lindley distribution (Shanker & Mishra, 2013), inverse
Lindley (Sharma et al., 2015) and power Lindley (Ghitany et al. 2013).

The cumulative distribution function (cdf) and probability density function (pdf) of the Lindley
distribution are given, respectively, by

g(x;λ ) =
λ 2

1+λ
(1+ x)e−λx, x > 0, λ > 0 (1.1)

and

G(x;λ ) = 1−
(

1+
λx

1+λ

)
e−λx, x > 0, λ > 0. (1.2)

Note that this distribution is a mixture of exponential (λ ) and gamma (2,λ ) distributions with
respective mixing proportions λ

1+λ and 1
1+λ . The One parameter Lindley distribution does not pro-

vide enough flexibility for analyzing different types of lifetime data. Hence, it will be useful to
consider other alternatives to this distribution for modelling purposes. Therefore, the goal of the
present study is to introduce a new distribution using the Lindley distribution as the baseline distri-
bution.

Gleaton and Lynch (2006, 2010) look at groups of transformations that divide the collection
of life distributions into equivalent classes. The one related to (1.3) (below) is given by transforma-
tions given by the composition of proportional odds transformation with the generalized log-logistic
transformation and they refer to the family as an extended generalized log-logistic family. This fam-
ily was called later the odd log-logistic Marshall-Olkin (OLLMO-G) family of distributions. An
equivalence class is the family given by (1.3) with ξ fixed and α,β > 0. When α = 1 and β > 0,
Equation (1.3) reduces to the original Marshall-Olkin family of distributions introduced by Marshall
and Olkin (1997). The pdf and cdf of OLLMO-G family are given, respectively, by

F(x;α,β ,ξ ) =
G(x;ξ )α

G(x;ξ )α +β Ḡ(x;ξ )α , α,β > 0, (1.3)

and pdf

f (x;α,β ,ξ ) =
α β g(x;ξ )G(x;ξ )α−1 Ḡ(x;ξ )α−1[

G(x;ξ )α +β Ḡ(x;ξ )α
]2 , (1.4)
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where Ḡ(x;ξ ) = 1−G(x;ξ ) and G(x;ξ ) is a baseline cdf which depends on a parameter vector ξ .
For β = 1, the parameter α in (1.3) represents the quotient of the log odds ratio for the generated
and baseline distributions as follows:

α =
log

[
F(x;α,ξ )
F̄(x;α,ξ )

]
log

[
G(x;ξ )
Ḡ(x;ξ )

] .

Based on the OLLMO-G family of Gleaton and Lynch (2010), we propose a new distribution
called OLLMO-L by inserting (1.2) in (1.3), having cdf

F(x;α,β ,λ ) =

[
1−

(
1+ λ

1+λ x
)

e−λ x
]α

[
1−

(
1+ λ

1+λ x
)

e−λ x
]α

+β
[(

1+ λ
1+λ x

)
e−λ x

]α . (1.5)

Then, the corresponding pdf of the OLLMO-L distribution is given by

f (x;α,β ,λ ) =
α β λ 2(1+ x)

(
1+ λ

1+λ x
)α−1

e−α λ x
[
1−

(
1+ λ

1+λ x
)

e−λ x
]α−1

(1+λ )
{[

1−
(

1+ λ
1+λ x

)
e−λ x

]α
+β

[(
1+ λ

1+λ x
)

e−λ x
]α}2 . (1.6)

A random variable X with pdf (1.6) is denoted by X ∼ OLLMO-L(α,β ,λ ). The OLLMO-L dis-
tribution is more flexible than the Lindley distribution and allows for greater flexibility of the tails.
Plots for the density function of OLLMO-L for several parameter values are displayed in Figures
1. As seen from Figures 1, the density function can take various forms depending on the parameter
values such as unimodal, symmetric, skewed, and monotonically decreasing shapes appear to be
possible. Some special models of (1.6) are given in Table 1.

Table 1. Some special models of the OLLMO-L distribution

α β Reduced distribution
1 1 Lindley
- 1 Odd log-logistic Lindley
1 - Marshal-Olkin Lindley

The rest of the paper is organized as follows. In Section 2, we provide a physical interpretation
of the OLLMO-L distribution. We also discuss the mathematical properties of the proposed dis-
tribution, including survival and hazard rate functions, quantile functions, pdf and cdf expansions,
moments and moment generating functions and asymptotic. Order statistics is presented in Section
3. Section 4 is devoted to certain characterizations of OLLMO-L distribution. Inference and estima-
tion by the method of maximum likelihood and an explicit expression for the observed information
matrix are presented in Section 5. Section 6 presents a simulation study. Two applications to real
data set is considered in Section 7. Finally, Section 8 offers some concluding remarks.
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Fig. 1. Plots of the OLLMO-L density function for some parameter values.

2. Main Properties

2.1. Survival and Hazard Rate Functions

Central role is played in the reliability theory by the quotient of the pdf and survival function. We
obtain the survival function corresponding to (1.5) as

S(x;α,β ,λ ) = 1−

[
1−

(
1+ λ

1+λ x
)

e−λ x
]α

[
1−

(
1+ λ

1+λ x
)

e−λ x
]α

+β
[(

1+ λ
1+λ x

)
e−λ x

]α . (2.1)

In reliability studies, the hazard rate function (hrf) is an important characteristic and fundamental to
the design of safe systems in a wide variety of applications. Therefore, we discuss these properties
for the OLLMO-L distribution. The hrf of X takes the form

h(x;α,β ,λ ) =
α β λ 2(1+ x)

[
1−

(
1+ λ

1+λ x
)

e−λ x
]α−1

(1+λ )(1+ λ
1+λ x)

{[
1−

(
1+ λ

1+λ x
)

e−λ x
]α

+β
[(

1+ λ
1+λ x

)
e−λ x

]α} .(2.2)

Plots for the hrfs of the OLLMO-L distribution for several parameter values are displayed in
Figures 2. Figures 2 shows that the hrf of the OLLMO-L distribution can have very flexible shapes,
such as increasing, decreasing, upside-down, bathtub. It is evident that the OLLMO-L distribution
is much more flexible than the Lindley distribution, i.e. the additional parameter α > 0 allows for a
high degree of flexibility of the OLLMO-L distribution. This attractive flexibility makes the hrf of
the OLLMO-L useful and suitable for non-monotone empirical hazard behaviour which are more
likely to be encountered or observed in real life situations.
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Fig. 2. Plots of the OLLMO-L hrfs for some parameter values.

2.2. Quantile Function

Quantile functions are in widespread use in statistics and often find representations in terms of
lookup tables for key percentiles. Let X ∼ OLLMO-L(α,β ,λ ) random variable. The quantile func-
tion, say Q(p), defined by F [Q(p)] = p, is the root of the equation

[1+λ +λ Q(p)]e−λ Q(p) =
(1+λ )(1− p)

1
α

(β p)
1
α +(1− p)

1
α
, (2.3)

for 0 < p < 1. Substituting Z(p) =−1−λ −λ Q(p), one can rewrite (2.3) as

Z(p)eZ(p) =
−(1+λ )(1− p)

1
α e−1−λ

(β p)
1
α +(1− p)

1
α

. (2.4)

Hence, the solution Z(p) is

Z(p) =W

[
−(1+λ )(1− p)

1
α e−1−λ

(β p)
1
α +(1− p)

1
α

]
, (2.5)

where W [.] is the Lambert function (Corless et al. 1996). Inserting (2.5) into Z(p) =−1−λ −Q(p)
gives

Q(p) =−1− 1
λ
− 1

λ
W

[
−(1+λ )(1− p)

1
α e−1−λ

(β p)
1
α +(1− p)

1
α

]
. (2.6)

The particular case of (2.6) for α = β = 1 has been derived recently by Jodrá (2010). Here, we
propose two different algorithms for generating random data from the OLLMO-L distribution.

(a) The first algorithm is based on generating random data from the Lindley distribution using
the exponential gamma mixture.

Algorithm 1 (Mixture form of the Lindley distribution)
• Generate Ui ∼ Uniform(0,1), i = 1, . . . ,n;
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• Generate Vi ∼ Exponential(λ ), i = 1, . . . ,n;
• Generate Wi ∼ Gamma(2,λ ), i = 1, . . . ,n;

• If (β Ui)
1
α

(β Ui)
1
α +(1−Ui)

1
α
≤ λ

1+λ set Xi =Vi, otherwise, set Xi =Wi, i = 1, . . . ,n.

(b) The second algorithm is based on generating random data from the inverse cdf in (1.5) of
OLLMO-L distribution.

Algorithm 2 (Inverse cdf)
• Generate Ui ∼ Uniform(0,1), i = 1, . . . ,n;
• Set

Xi =

{
−1− 1

λ
− 1

λ
W

[
−(1+λ )(1−Ui)

1
α e−1−λ

(β Ui)
1
α +(1−Ui)

1
α

]}
, i = 1, . . . ,n.

2.3. Expansions for the Cumulative and Density Functions

In this subsection, we provide alternative mixture representations for the pdf and cdf of OLLMO-L
distribution. Despite the fact that the pdf and cdf of OLLMO-L require mathematical functions that
are widely available in modern statistical packages, frequently analytical and numerical derivations
take advantage of power series for the pdf. Some useful expansions for (1.5) can be derived by using
the concept of power series. We obtain the pdf of OLLMO-L as

{
1−

(
1+

λx
1+λ

)
e−λx

}α
=

∞

∑
k=0

ak

{
1−

(
1+

λx
1+λ

)
e−λx

}k

, (2.7)

where ak = ∑∞
i=k(−1)i+k

(
α
i

)(
i
k

)
and

[
1−

(
1+

λ
1+λ

x
)

e−λ x
]α

+β
[(

1+
λ

1+λ
x
)

e−λ x
]α

=
∞

∑
k=0

bk

{
1−

(
1+

λx
1+λ

)
e−λx

}k

, (2.8)

where bk = ak +β (−1)k
(

α
i

)
.

Identity (2.7) is a consequence of the generalized binomial expansion of

(1−∆)α =
∞

∑
k=0

(
α
k

)
(−1)k ∆k,

where
(

α
k

)
= α(α−1)···(α−k+1)

k! and the binomial expansion of

∆k =
k

∑
j=0

(
k
j

)
(−1) j (1−∆) j.

Substituting the latter expansion into the former one, interchanging the order of summation and
replacing ∆ = (1+ λ x

1+λ )e
−λ x gives (2.7).
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Then we can write

F(x) =
∑∞

k=0 ak

{
1−

(
1+ λx

1+λ

)
e−λx

}k

∑∞
k=0 bk

{
1−

(
1+ λx

1+λ

)
e−λx

}k =
∞

∑
k=0

ck

{
1−

(
1+

λx
1+λ

)
e−λx

}k

, (2.9)

where c0 =
a0
b0

and for k ≥ 1,

ck = b−1
0

[
ak −b−1

0

k

∑
r=1

br ck−r

]
, (2.10)

We can write

F(x) =
∞

∑
k=0

ck Gk(x), (2.11)

where Gk(x) denotes the cdf of generalized Lindley (exponentiated Lindley) distribution with
parameters λ and k.

Now, by differentiation (2.11), the pdf of X can be expressed as

f (x) =
∞

∑
k=0

ck+1 gk+1(x), (2.12)

where gk+1(x) denotes the pdf of generalized Lindley (exponentiated Lindley) distribution with
parameters λ and k. Several properties of the OLLMO-L distribution can be obtained from pdf and
cdf expansions given in (2.11) and (2.12), respectively.

2.4. Moments and Moment Generating Function

Some of the most important features and characteristics of a distribution can be studied through
moments (e.g. tendency, dispersion, skewness and kurtosis). We obtain ordinary moments and the
moment generating function of the OLLMO-L distribution. Nadarajah et al. (2011) defined and
computed

A(a,b,c,δ ) =
∫ ∞

0
xc(1+ x)

[
1−

(
1+

bx
b+1

)
e−bx

]a−1

e−δxdx, (2.13)

which can be used to produce ordinary moments (µ ′
r). Then, we have

A(a,b,c,δ ) =
∞

∑
l=0

l

∑
r=0

r+1

∑
s=0

(
a−1

l

)(
l
r

)(
r+1

s

)
(−1)lbrΓ(s+ c+1)
(1+b)l(bl +δ )c+s+1 . (2.14)

From equations (2.11) and (2.12), we obtain

µ ′
r = E [X r] =

λ 2

1+λ

∞

∑
k=0

(k+1)ck+1 A(k+1,λ ,r,λ ). (2.15)

The ordinary moments of the OLLMO-L distribution can be calculated directly from (2.15).
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We now provide a formula for the conditional moments of the OLLMO-L distribution. Nadara-
jah et al. (2011) defined and computed the following equation for the conditional moments

L(a,b,c,δ , t) =
∫ ∞

t
xc(1+ x)

[
1−

(
1+

bx
b+1

)
e−bx

]
e−δxdx. (2.16)

Using generalized binomial expansion, we have

L(a,b,c,δ , t) =
∞

∑
l=0

l

∑
r=0

r+1

∑
s=0

(
a−1

l

)(
l
r

)(
r+1

s

)
(−1)lbrΓ(s+ c+1,(bl +δ )t)

(1+b)l(bl +δ )c+s+1 , (2.17)

where

Γ(a,x) =
∫ ∞

x
ta−1 e−t dt, (2.18)

denotes the incomplete gamma function. From (2.12) and (2.17), we obtain

µ ′
r(t) = E [X r|X > t] =

λ 2

1+λ

∞

∑
k=0

(k+1)ck+1 L(k+1,λ ,r,λ , t). (2.19)

The incomplete moments of the OLLMO-L distribution can be calculated directly from (2.19).
The moment generating function (mgf) of a random variable provides the basis for an alternative

route to analytical results compared with working directly with its pdf and cdf. Using (2.12) and
(2.14), we obtain

MX(t) = E
[
etX]= λ 2

1+λ

∞

∑
k=0

(k+1)ck+1 A(k+1,λ ,0,λ − t).

Remark 2.1. The central moments (µn) and cumulants (κn) of X are easily obtained from (2.15) as

µn =
n

∑
k=0

(−1)k
(

n
k

)
µ ′k

1 µ ′
n−k and κn = µ ′

n −
n−1

∑
k=1

(
n−1
k−1

)
κk µ ′

n−k,

respectively, where κ1 = µ ′
1. Thus, κ2 = µ ′

2 −µ ′2
1 , κ3 = µ ′

3 −3µ ′
2µ ′

1 +2µ ′3
1 , etc.

2.5. Asymptotic

Let X ∼ OLLMO-L(α,β ,λ ), the asymptotic of (1.5), (1.6) and (2.2) as x → 0 are given by

F(x)∼ (λ x)α

β
as x → 0,

f (x)∼ α λ α xα−1

β
as x → 0,

h(x)∼ α λ α xα−1

β
as x → 0.

(2.20)

The asymptotic of (1.5), (1.6) and (2.2) as x → ∞ are given by
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f (x)∼ α β λ
(

λ
1+λ

)α
xα−1 e−αλ x as x → ∞,

1−F(x)∼ β
(

λ
1+λ

)α
xα e−αλ x as x → ∞,

h(x)∼ αβ λ
x

as x → ∞.

(2.21)

3. Order statistics

Order statistics make their appearance in many areas of statistical theory and practice. Suppose
X1, . . . ,Xn is a random sample from the OLLMO-L distribution. Let Xi:n denote the ith order statistic.
The pdf of Xi:n can be expressed as

fi:n(x) = K
n−i

∑
j=0

(−1) j
(

n− i
j

) [
∞

∑
r=0

cr+1 (r+1)G(x)r g(x)

][
∞

∑
k=0

ck G(x)k

] j+i−1

,

where K = n!/[(i−1)!(n− i)!]. Using a result of Gradshteyn and Ryzhik (2000, Section 0.314) for
a power series raised to a positive integer, we obtain[

∞

∑
k=0

ck G(x)k

] j+i−1

=
∞

∑
k=0

e j+i−1,k G(x)k,

where e j+i−1,0 = c j+i−1
0 and, for k ≥ 1,

e j+i−1,k = (k c0)
−1

k

∑
q=1

[q( j+ i)− k]cq e j+i−1,k−q.

Setting dr = (r + 1)cr+1 and using a result of Gradshteyn and Ryzhik (2000, Section 0.316) for
multiplying two power series, we have

fi:n(x) = K
n−i

∑
j=0

(−1) j
(

n− i
j

)
g(x)

[
∞

∑
r=0

dr G(x)r

][
∞

∑
k=0

e j+i−1,k G(x)k

]

= K
n−i

∑
j=0

(−1) j
(

n− i
j

)
g(x)

∞

∑
k=0

e∗k G(x)k,

where e∗k = ∑k
q=0 e j+i−1,q dk−q. Hence, we can write

fi:n(x) =
∞

∑
k=0

sk hk+1(x), (3.1)

where (for k ≥ 0)

sk =
k

k+1

n−i

∑
j=0

(−1) j
(

n− i
j

)
e∗k .
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Equation (3.1) is the main result of this section. It reveals that the pdf of the OLLMO-L an order
statistic is a triple linear combination of exponentiated power Lindley distributions. Therefore, sev-
eral mathematical quantities of these order statistics like ordinary and incomplete moments, factorial
moments, mgf, mean deviations and others can be derived using this result.

4. Characterizations

In this section we present certain characterizations of OLLMO-L distribution. These characteriza-
tions are in terms of: (i) a simple relation between two truncated moments; (ii) the hazard function
and (iii) the reverse hazard function. One of the advantages of characterization (i) is that the cdf is
not required to have a closed form.

We present our characterizations (i)− (iii) in three subsections.

4.1. Characterizations based on ratio of two truncated moments

In this subsection we present characterizations of OLLMO-L distribution in terms of a simple rela-
tionship between two truncated moments. This characterization result employs a theorem due to
Glänzel [1] , see Theorem A,1 of Appendix A. Note that the result holds also when the interval H
is not closed. Moreover, as mentioned above, it could also be applied when the cdf F does not have
a closed form. As shown in [2], this characterization is stable in the sense of weak convergence.

Proposition 4.1. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) =

e(α−1)λx
(

1+ λ
1+λ x

)1−α {[
1−

(
1+ λ

1+λ x
)

e−λx
]α

+β
[(

1+ λ
1+λ x

)
e−λx

]α}2
and q2 (x) = q1 (x)[

1−
(

1+ λ
1+λ x

)
e−λx

]α
for x > 0. The random variable X has pdf (1.6) if and only if the function

η defined in Theorem A.1 has the form

η (x) =
1
2

{
1+

[
1−

(
1+

λ
1+λ

x
)

e−λx
]α}

, x > 0.

Proof. Let X be a random variable with pdf (1.6), then

(1−F (x))E [q1 (x) | X ≥ x] = β
{

1−
[

1−
(

1+
λ

1+λ
x
)

e−λx
]α}

, x > 0,

and

(1−F (x))E [q2 (x) | X ≥ x] =
β
2

{
1−

[
1−

(
1+

λ
1+λ

x
)

e−λx
]2α

}
, x > 0,

and finally

η (x)q1 (x)−q2 (x) =
1
2

q1 (x)
{

1−
[

1−
(

1+
λ

1+λ
x
)

e−λx
]α}

> 0 f or x > 0.

Conversely, if η is given as above, then
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s′ (x) =
η ′ (x)q1 (x)

η (x)q1 (x)−q2 (x)
=

αλ 2 (1+ x)e−λx
[
1−

(
1+ λ

1+λ x
)

e−λx
]α−1

(1+λ )
{

1−
[
1−

(
1+ λ

1+λ x
)

e−λx
]α} x > 0,

and hence

s(x) =− log
{

1−
[

1−
(

1+
λ

1+λ
x
)

e−λx
]α}

, x > 0.

Now, in view of Theorem A.1, X has density (1.6) . �

Corollary 4.1. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) be as in Propo-
sition 4.1. The pdf of X is (1.6) if and only if there exist functions q2 and η defined in Theorem A.1
satisfying the differential equation

η ′ (x)q1 (x)
η (x)q1 (x)−q2 (x)

=
αλ 2 (1+ x)e−λx

[
1−

(
1+ λ

1+λ x
)

e−λx
]α−1

(1+λ )
{

1−
[
1−

(
1+ λ

1+λ x
)

e−λx
]α} , x > 0.

The general solution of the differential equation in Corollary 4.1 is

η (x) =
{

1−
[

1−
(

1+
λ

1+λ
x
)

e−λx
]α}−1

 −
∫ αλ 2

(1+λ ) (1+ x)e−λx×[
1−

(
1+ λ

1+λ x
)

e−λx
]α−1

(q1 (x))
−1 q2 (x)+D

 ,

where D is a constant. Note that a set of functions satisfying the above differential equation is
given in Proposition 4.1 with D = 1

2 . However, it should be also noted that there are other triplets
(q1,q2,η) satisfying the conditions of Theorem A.1.

4.2. Characterization based on hazard function

It is known that the hazard function, hF , of a twice differentiable distribution function, F , satisfies
the first order differential equation

f ′(x)
f (x)

=
h′F(x)
hF(x)

−hF(x).

For many univariate continuous distributions, this is the only characterization available in terms
of the hazard function. The following characterization establish a non-trivial characterization of
OLLMO-L distribution, when α = 1, which is not of the above trivial form.

Proposition 4.2. Let X : Ω → (0,∞) be a continuous random variable. The pdf of X for α = 1, is
(1.6) if and only if its hazard function hF (x) satisfies the differential equation
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h′F (x)− (1+ x)−1 hF (x) =

λ 2

1+λ
(1+ x)

d
dx

 eλx(
1+ λ

1+λ x
)

eλx +(β −1)
(

1+ λ
1+λ x

)2

 , x > 0.

Proof. If X has pdf (1.6), then clearly the above differential equation holds. Now, this differential
equation holds, then

d
dx

{
(1+ x)−1 hF (x)

}
=

λ 2

1+λ
d
dx


(

1+ λ
1+λ x

)−1

1+(β −1)
(

1+ λ
1+λ x

)
e−λx

 , x > 0,

from which, we obtain

hF (x) =
λ 2

1+λ


(1+ x)

(
1+ λ

1+λ x
)−1

1+(β −1)
(

1+ λ
1+λ x

)
e−λx

 , x > 0,

which is the hazard function of OLLMO-L distribution for α = 1. �
Remark 4.1. for α = β = 1 , we have a simple differential equation in terms of the hazard function

h′F (x)− (1+ x)−1 hF (x) =− λ 3 (1+ x)
(1+λ +λx)2 , x > 0.

4.3. Characterizations in terms of the reverse hazard function

The reverse hazard function, rF , of a twice differentiable distribution function, F , is defined as

rF (x) =
f (x)
F (x)

, x ∈ support o f F.

This subsection deals with the characterization of OLLMO-L distribution, for α = 1 , based on
the reverse hazard function.

Proposition 4.3. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has
pdf (1.6) if and only if its reverse hazard function rF (x) satisfies the following differential equation

r′F (x)− (1+ x)−1 rF (x)

=
βλ 2

1+λ
(1+ x)

d
dx

 1[
eλx −

(
1+ λ

1+λ x
)][

1+(β −1)
(

1+ λ
1+λ x

)
e−λx

]
 , x > 0.

Proof. Is similar to that of Proposition 4.2. �
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5. Estimation

We obtain the maximum likelihood estimates (MLEs) of the parameters of the OLLMO-L distribu-
tion from complete samples only. Let x1, . . . ,xn be a random sample of size n from the OLLMO-L
(α,β ,λ ) distribution. The log-likelihood function for the vector of parameters θ = (α,β ,λ )T can
be written as

l(θ) = n log
(

α β λ 2

1+λ

)
+

n

∑
i=1

log(1+ xi)−λ
n

∑
i=1

xi +(α −1)
n

∑
i=1

log [qi(1−qi)]

− 2
n

∑
i=1

log [qα
i +β (1−qi)

α ] (5.1)

where qi = 1− (1+ λ
1+λ xi)e−λxi is a transformed observation.

The log-likelihood can be maximized either directly by using the SAS (Procedure NLMixed) or
the MaxBFGS routine in the matrix programming language Ox (see Doornik, 2007) or by solving
the nonlinear likelihood equations obtained by differentiating (5.1) simultaneously. The components
of the score vector U(θ) are given by

Uα(θ) =
n
α
+

n

∑
i=1

log [qi(1−qi)]−2
n

∑
i=1

qα
i log(qi)+β (1−qi)

α log(1−qi)

qα
i +β (1−qi)α ,

Uβ (θ) =
n
β
−2

n

∑
i=1

(1−qi)
α

qα
i +β (1−qi)α

and

Uλ (θ) =
2n
λ

− n
1+λ

−
n

∑
i=1

xi +(α −1)

−2α
n

∑
i=1

q(λ )i
qα−1

i −β (1−qi)
α−1

qα
i +β (1−qi)α .

For interval estimation and hypothesis testing on the model parameters, we require the 3× 3
observed information matrix J = J(θ) with elements given by

Jαα(θ) =
−n
α2 −2β

n

∑
i=1

qα
i (1−qi)

α
[
log( qi

1−qi
)
]2

[qα
i +β (1−qi)α ]2

,

Jαβ (θ) =−2
n

∑
i=1

qα
i (1−qi)

α log(1−qi)

[qα
i +β (1−qi)α ]2

,

Jαλ (θ) =
n

∑
i=1

q(λ )i
qi

−
n

∑
i=1

q(λ )i
1−qi

+
n

∑
i=1

q(λ )i qα−1
i [1+α log(qi)]

qα
i +β (1−qi)α −α

n

∑
i=1

q(λ )i
qα−1

i −β (1−qi)
α−1

qα
i +β (1−qi)α

−β
n

∑
i=1

q(λ )i (1−qi)
α−1 [1+α log(1−qi)]

qα
i +β (1−qi)α ,

Jββ (θ) =
n

β 2 +2
n

∑
i=1

[
(1−qi)

α

qα
i +β (1−qi)α

]2

,
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Jβλ (θ) = 2α
n

∑
i=1

q(λ )i qα
i (1−qi)

α

[qα
i +β (1−qi)α ]2

,

and

Jλλ (θ) =
−2n
λ 2 +

n
(1+λ )2 +(α −1)

n

∑
i=1

q(λλ )
i qi −

[
q(λ )i

]2

q2
i

+(1−α)
n

∑
i=1

q(λλ )
i (1−qi)+

[
q(λ )i

]2

(1−qi)2

−2α
n

∑
i=1

q(λλ )
i

qα−1
i −β (1−qi)

α−1

qα
i +β (1−qi)α −2α(α −1)

n

∑
i=1

[
q(λ )i

]2 qα−2
i +β (1−qi)

α−2

qα
i +β (1−qi)α

+2α2
n

∑
i=1

{
q(λ )i

qα−1
i −β (1−qi)

α−1

qα
i +β (1−qi)α

}2

,

where

q(λ )i =
λ xi (1+ xi)

−λ xi
e

(1+λ )2 ,

q(λλ )
i =

λ xi (1+ xi) [1−λ −λ (1+λ )xi]
−λ xi
e

(1+λ )3 .

Under the conditions that are fulfilled for parameters in the interior of the parameter space
but not on the boundary, the asymptotic distribution of

√
n(θ̂ − θ) is N3(0, I(θ)−1), where I(θ)

is the expected information matrix. In practice, we can replace I(θ) by the observed information
matrix evaluated at θ̂ (say J(θ̂)). We can construct approximate confidence intervals and confidence
regions for the individual parameters and for the hazard and survival functions based on the multi-
variate normal N2(0,J(θ̂)−1) distribution. Further, the likelihood ratio (LR) statistic can be used for
comparing this distribution with some of its special sub-models. We can compute the maximum val-
ues of the unrestricted and restricted log-likelihoods to construct the LR statistics for testing some
sub-models of the OLLMO-L distribution.

6. Simulation

In this section, a simulation study is conducted to examine the performance of the MLEs of
OLLMO-L parameters. From Algorithm 2, we generate 1000 samples of size, n =20, 50, 100 and
n=500 of OLLMO-L model. The evaluation of estimates was based on the mean of the MLEs of
the model parameters, the mean squared error (MSE) of the MLEs. The empirical study was con-
ducted with software R and the results are given in Table 2. The values in Table 2 indicate that the
estimates are quite stable and, more importantly, are close to the true values for the these sample
sizes. It is observed from Table 2 that the standard deviation decreases as n increases. The simula-
tion study shows that the maximum likelihood method is appropriate for estimating the OLLMO-L
parameters. In fact, the MSEs of the parameters tend to be closer to the true parameter values when
n increases. This fact supports that the asymptotic normal distribution provides an adequate approx-
imation to the finite sample distribution of the MLEs. The normal approximation can be improved
by using bias adjustments to these estimators. Approximations to the their biases in simple models
may be obtained analytically.

For large values of parameters, MSE values are higher and algorithm could not generate random
data good enough. Hence, we did not give the results for large values.
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Table 2. Mean and MSE for the of the MLEs of the parameters of the OLLMO-L model.

α β λ n Mean MSE
α β λ α β λ

0.5 0.5 1 20 0.538 0.632 1.34 0.246 0.217 0.122
50 0.512 0.615 1.315 0.2407 0.155 0.103
100 0.5093 0.605 1.170 0.237 0.148 0.081
500 0.503 0.54 1.28 0.213 0.135 0.045

1 0.5 0.5 20 1.17 0.564 0.428 0.037 0.232 0.349
50 1.192 0.563 0.444 0.036 0.2205 0.3428
100 1.190 0.532 0.452 0.032 0.19 0.335
500 1.180 0.5192 0.478 0.0033 0.02 0.032

1 1 1 20 1.071 1.14 1.34 0.027 0.132 0.245
50 1.044 1.091 1.281 0.013 0.125 0.122
100 1.029 1.056 1.171 0.009 0.12 0.095
500 1.011 1.041 1.02 0.003 0.008 0.027

1 0.5 1 20 1.017 0.57 1.054 0.054 0.212 0.215
50 1.009 0.559 1.044 0.019 0.206 0.199
100 0.994 0.55 1.024 0.0095 0.194 0.035
500 0.998 0.538 1.024 0.001 0.184 0.0025

1 1 2 20 0.877 1.116 2.375 0.035 0.132 0.245
50 0.881 1.080 2.575 0.023 0.125 0.122
100 0.919 0.914 2.143 0.019 0.12 0.095
500 0.956 0.996 2.047 0.015 0.017 0.065

7. Applications

In this section, we provide two applications to real lifetime data to illustrate the flexibility of the
OLLMO-L model. We compare the performance of the new model with those of the odd Burr Lind-
ley, Kumaraswamy Lindley, Marshall-Olkin Lindley, Power Lindley, and Odd log-logistic Lindley
models described in Table 3. Then, the MLEs of the model parameters are determined.

Table 3. Distributions .

Distribution Abbreviation References
Odd Burr Lindley OBu-L Altun et al.
Kumaraswamy Lindley Kum-L Cakmakyapan and Ozel (2015)
Marshall-Olkin Lindley MO-L Marshall and Olkin (1995)
Power Lindley PL Ghitany et al. (2013)
Odd Log-logistic Lindley OLL-L Ozel et al. (2016)
Odd Log-logistic Marshal-Olkin Lindley OLLMO-L Proposed

7.1. Application to bladder cancer patients data

In this subsection, we provide application to a real data set to demonstrate the potentiality of the
OLLMO-L distribution. First, we describe the data set and determine the MLEs (and their stan-
dard errors in parentheses) of the parameters. We consider an uncensored data set corresponding
to remission times (in months) of a random sample of 128 bladder cancer patients (Lee & Wang,
2003).
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Table 4 lists the MLEs and their standard errors of the parameters from the fitted models. In order
to compare the above mentioned models with the proposed OLLMO-L model, we apply goodness-
of-fit tests to verify which distribution fits better the real data set. The statistics Cramer von Mises
(W*) and Anderson Darling (A*) are described in details in Chen & Balakrishnan (1995). In gen-
eral, the smaller the values of these statistics, the better the fit to the data. The statistics in Tables 4
clearly indicate that the OLLMO-L model provides the best fit to the data.

Table 4. The estimates of parameters and goodness-of-fit statistics for bladder cancer patients data
Model Parameter Estimates A∗ W ∗ −ℓ
PL(α,θ) 0.830 0.294 0.703 0.117 413.354

0.047 0.037
MO−L(β ,λ ) 0.110 0.074 0.103 0.0153 409.593

0.199 1.544 0.650
Kum−L(a,b,λ ) 0.886 0.300 0.466 0.864 0.144 414.506

0.010 0.027 0.008
OLL−L(α,λ ) 0.836 0.203 1.177 0.197 416.638

0.064 0.014
OBu−L(α,β ,λ ) 1.009 0.302 0.480 0.768 0.128 414.462

0.005 0.027 0.005
OLLMO−L(α,β ,λ ) 1.065 0.0715 0.064 0.089 0.013 408.274

0.082 0.08 0.033

In order to assess whether the model is appropriate, probability density and empirical distribu-
tion functions are presented in Figure 3 for all considered distributions for bladder cancer patients
data. As seen from Figure 3, the estimated OLLMO-L density for the first data is unimodal. Proba-
bility density, survival, empirical distribution functions and probability-probability (P-P) plot of the
OLLMO-L model is also presented in Figure 3(right). It is clear that OLLMO-L distribution is very
suitable for the bladder cancer patients data.
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Fig. 3. Fitted density and cumulative distribution functions of the models (left) and fitted functions of OLLMO-L model
(right) for bladder cancer patients data

7.2. Application to fatigue data

The second data set comes from the life of fatigue fracture of Kevlar 373/epoxy that are subject to
constant pressure at the 90 stress level until all had failed. Hence, we have complete data with the
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exact times of failure. The data set consists of 76 observations. For the previous studies with the
data sets see Andrews & Herzberg (1985).

Table 5 provides the MLEs of the parameters for the PL, MO-L, Kum-L, OLL-L, OBu-L, and
proposed OLLMO-L models. Further, we give the standard errors of the estimates and the values of
W* and A* statistics.

Table 5. The estimates of parameters and goodness-of-fit statistics for fatigue data
Model Parameter Estimates A∗ W ∗ −ℓ
PL(α,θ) 1.142 0.704 0.756 0.128 122.400

0.09 0.081
MO−L(β ,λ ) 1.975 1.036 0.800 0.136 122.628

0.871 0.179
Kum−L(a,b,λ ) 1.420 0.892 10.179 0.656 0.111 121.893

0.373 0.925 0.787
OLL−L(α,λ ) 1.259 0.75 0.569 0.0964 121.364

0.128 0.055
OBu−L(α,β ,λ ) 1.342 0.669 0.943 0.524 0.089 121.158

0.193 0.379 0.31
OLLMO−L(α,β ,λ ) 1.419 0.338 0.513 0.493 0.083 120.019

0.226 0.536 0.276

Table 5 shows that the proposed OLLMO-L model presents the smallest values of the statistics
W* and A* among all the models. More information is provided by a usual comparison of the his-
tograms of the fatigue data with the fitted pdfs. The fitted pdfs and cdfs are shown in Figure 4. They
indicate that the OLLMO-L distribution provides more adequate fit than the other distributions. Fig-
ure 4(right) displays thr probability density, survival, empirical distribution functions and P-P plot
of the OLLMO-L model. Figure 4 shows that the OLLMO-L distribution is very suitable for the
bladder cancer patients data.
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Fig. 4. Fitted density and cumulative distribution functions of the models (left) and fitted functions of OLLMO-L model
(right) for fatigue data

8. Conclusion

In this paper, we propose the odd log-logistic Marshall-Olkin Lindley ”OLLMO-L” distribution. We
study some of its structural properties including an expansion for the density function and explicit
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expressions for the moments, generating function, quantile function and order statistics. The max-
imum likelihood method is employed for estimating the model parameters. We fit OLLMO-L dis-
tribution to two real data sets to demonstrate the usefulness of the new distribution. OLLMO-L
distribution provides consistently better fits than other competing models. We hope that the pro-
posed distribution will attract wider applications in several areas such as engineering, survival and
lifetime data, hydrology and economics, among others.
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Appendix A.

Theorem A.1. Let (Ω,F ,P) be a given probability space and let H = [a,b] be an interval for
some d < b (a =−∞, b = ∞ might as well be allowed) . Let X : Ω → H be a continuous random
variable with the distribution function F and let q1 and q2 be two real functions defined on H such
that

E [q2 (X) | X ≥ x] = E [q1 (X) | X ≥ x]η (x) , x ∈ H,

is defined with some real function η . Assume that q1,q2 ∈C1 (H), η ∈C2 (H) and F is twice contin-
uously differentiable and strictly monotone function on the set H. Finally, assume that the equation
ηq1 = q2 has no real solution in the interior of H. Then F is uniquely determined by the functions
q1,q2 and η , particularly

F (x) =
∫ x

a
C
∣∣∣∣ η ′ (u)
η (u)q1 (u)−q2 (u)

∣∣∣∣exp(−s(u)) du ,

where the function s is a solution of the differential equation s′ = η ′ q1
ηq1−q2

and C is the normalization
constant, such that

∫
H dF = 1.
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