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Abstract—We derive the space rotational transformation 
matrices under two assumptions: the invariance of vector length 
and the allowance of infinitesimal rotation. The derivation is 
simple and concise by using trigonometric functions and the 
result is compared with previous studies. The method can be 
further generalized to derive the Lorentz transformation in 
spacetime. 
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I.  INTRODUCTION  
In previous series we have comprehensively discussed the 

origin and applications of pseudovectors in physics [1-4]. In 
those studies most efforts were spent on the space rotation of 
vectors. Because it is crucial for a physical vector to abide the 
proper rotational transformation rule or it can’t be considered 
as a proper vector. Such transformation rule is mathematically 
represented by the rotational matrices as shown in reference 
[1-4]. Now we raise a deeper question: how the rotation 
transformation matrices are obtained, or, what is the principle 
behind the construction of the rotation matrices? 

In this paper we answer this question in detail. The basic 
idea is based on two facts: (i) the length of a vector should be 
invariant during the rotation, and (ii) the rotation must allow 
infinitesimal operation. We first show how these two 
principles lead to the well-defined rotation matrix, then apply 
this principle to the pseudovectors we studied before. It is seen 
that to justify whether a quantity is a vector, it is usually much 
simpler to verify whether its ‘length’ is a scalar than whether 
its coordinates transform according to the rotation matrix. 

II. LENGTH INVARIANCE AND ROTATIONAL TRANSFORMATION 
First we look at a rotation about the z axis, such that only 

the x and y coordinates transform under rotation. In this case 
the position vector r transforms to r’ with the z component 
untouched 

( , , ) ' ( ', ', )x y z x y z= → =r r    (1) 

Now the invariance of length refers to 'r = r , i.e., 

2 2 2 2( ') ( ')x y x y+ ≡ +      (2) 

We now seek a transformation that always preserves the 
equality (2).  

Provided the transformation being linear and 
homogeneous, it can be tentatively written as 

'
'

x ax by
y cx dy
= +

 = +
     (3) 

where the coefficients a, b, c, and d are to be determined. 
Inserting equation (3) into (2) we find 

2 2 2 2

2 2 2 2 2 2

( ) ( )
( ) ( ) 2( )

x y ax by cx dy
a c x b d y ab cd xy

+ = + + +

= + + + + +
  (4) 

By equating the corresponding terms of x and y we obtain the 
following set of equations 

2 2

2 2

1
1
0

a c
b d
ab cd

 + =
 + =
 + =

     (5) 

The first equation in (5) suggest that a and c can be denoted by 
the trigonometric functions, without loss of generality, as 

cos
sin

a
c

θ
θ

=
 =

      (6) 

where θ  is an arbitrary parameter. Similarly, the second 
equation in (5) suggest that 

sin
cos

b
d

ξ
ξ

=
 =

      (7) 
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where  ξ  is another arbitrary parameter. Note here we have 
changed the order of sine and cosine to facilitate latter 
derivations. Inserting  (6) and (7) into the last equation of (5) 
we find 

cos sin sin cos 0θ ξ θ ξ+ =     (8) 

i.e.,  

sin( ) 0θ ξ+ =       (9) 

Equation (9) has two distinct solutions, namely 

0θ ξ+ =       (10) 

and 

θ ξ π+ =       (11) 

It is straightforward to see that the first solution (10) leads to 
the following transformation 

' cos sin
' sin cos

x x y
y x y

θ θ
θ θ

= −
 = +

    (12) 

The equations (12) are exactly the transformation of 
coordinates for a z-axis rotation of angle θ . Meanwhile, the 
second solution (11) yields 

' cos sin
' sin cos

x x y
y x y

θ θ
θ θ

= +
 = −

    (13) 

Although this transformation does preserve the length of 
vector r, it is not the rotation transformation required in 
physics. The reason is apparent when infinitesimal 
transformation is considered, i.e., for 0θ →  it is clear that 
equation (13) reduces to 

'
'

x x x
y y y

     
→ =     −     

    (14) 

which is not the identity transformation. This is not an 
acceptable property of rotation, which must reduce to identity 
transformation at 0θ → . It is easy to verify that the 
transformation (12) does satisfy this requirement. As a 
conclusion, we assert that the transformation for z-axis 
rotation must have exactly the form as shown in equation (12). 

The above analysis can be easily generalized to rotations 
about the x and y axes.  By simply applying the cyclic rule, 

x y→ , y z→ ,  and z x→     (15) 

to equation (13), we obtain the rotational transformation 
matrices about the three Cartesian axes as 

,

cos sin 0
sin cos 0

0 0 1
θ

θ θ
θ θ

− 
 =  
 
 

zR

,

1 0 0
0 cos sin
0 sin cos

θ θ θ
θ θ

 
 = − 
 
 

xR

,

cos 0 sin
0 1 0

sin 0 cos
θ

θ θ

θ θ

 
 =  
 − 

yR  

Finally, the general rotation matrix R is an arbitrary 
combination (multiplications) of above matrices. The 
aggregation of all such rotational matrices forms a continuous 
group called the SO(3). 

III. SCALAR AND VECTORS IN PHYSICS 
Since the rotational transformation matrices (16) are 

deduced from length invariance, it is safe to say that if a 
quantity ( , , )x y zA A A=A  preserves its length square 

2 2 2 2
x y zA A A= + +A     (17) 

under space rotation, then A  must be a proper vector. Such 
criterion is equivalent to verifying whether A  abides the 
rotation matrix R. Generally, if a quantity is invariant under 
space rotation, it is called a scalar. Clearly, the length square 
of a vector is such a quantity.  

Moreover, if A and B are two vectors, then the inner 
product 

x x y y z zA B A B A B⋅ = + +A B     (18) 

Is also a scalar. This can be easily shown as follows 

( ) ( ) ( )
( )( ) ( )

T T

T T T T

T

⋅ ≡ =

= =

⋅

A' B' A' B' RA RB
A R RB A R R B

= A B = A B
 (19) 

where the vectors are treated as column matrices such that 
inner product can be calculated via matrix multiplication. 
Essentially, equation (19) holds because the rotational matrix 
R is orthogonal.  

(16) 

Advances in Engineering Research, volume 119

38



On the other hand, if A is a vector and the quantity defined 
in (18) is a scalar, then B must be a vector. The proof is as 
follows. We assume under rotation B transforms to B’, and the 
transformation is linear and homogeneous such that it can be 
described by a matrix S. Now if the inner product is invariant 
under rotation we must have the following equality 

( ) ( ) ( ) ( )( )
( )

T T T T

T T T

= =

= =

A' B' RA SB A R SB
A R S B A B

  (20) 

Obviously the last step in equation (20) holds only if 

T =R S I , i.e., =S R     (21) 

because R is an orthogonal matrix. That is to say, B transforms 
under the rotational matrix R, i.e., it must be a proper vector. 

Next we use these criteria to verify several fundamental 
vector quantities in physics. The infinitesimal displacement 

( , , )d dx dy dz=r      (22) 

is a vector because it is the difference between two position 
vectors r and r’. The velocity 

, ,d dx dy dz
dt dt dt dt

 = =  
 

rv     (23) 

is a vector because it is the vector dr divided by the scalar dt. 
Likewise, the acceleration 

( , , )yx z
dvdv dvd

dt dt dt dt
= =

va     (24) 

is a vector because it is the vector dv divided by the scalar dt. 
The force obtained from the Newton’s law 

m=F a       (25) 

is a vector because it is the vector a multiplied by a scalar m. 
A conservative force can be described otherwise as the 
gradient of a scalar potential field ( , , )x y zϕ , i.e.,  

, ,
x y z
ϕ ϕ ϕϕ

 ∂ ∂ ∂
≡ −∇ = − ∂ ∂ ∂ 

F    (26) 

Because the potential ϕ  itself is a scalar, its infinitesimal 
increment dϕ  along infinitesimal displacement dr  is still a 
scalar,  

d d dx dy dz
x y z
ϕ ϕ ϕϕ ϕ ∂ ∂ ∂

= ∇ ⋅ = + +
∂ ∂ ∂

r   (27) 

Because here dr  is a vector, the gradient of a scalar field 
ϕ∇  must be a vector, so does the force defined in (26). 
Now we look at a pseudovector, namely the torque 
= ×M r F . We tentatively calculate its inner product with 

the vector r, i.e.,  

( ) ( ) ( )
0

z y x z y xx yF zF y zF xF z xF yF⋅ = − + − + −

=

r M
 

      (28) 

which is clearly a scalar, therefore the torque M must be 
vector. The cross product of any two vectors can be proved to 
be a vector in exactly the same way. Evidently, the proof (28) 
is exceedingly simple and concise than the method using 
transformation matrices as we have shown in [1].  

Another kind of pseudovector is the curl of a vector field. 
Using the Stokes’ theorem and let the trajectory L, as well as 
the surface element S enclosed by it, shrinks to infinitesimal 
size, we obtain 

0
0

lim( )
L

→
→

∇× ⋅ = ⋅∫S
A S A dl     (29) 

The right hand term is an inner product so that it is a scalar. 
Because the surface element S itself is a vector, equation (29) 
suffices to speak that the curl of A is a vector. Here the proof 
(29) is also much simpler than what we have shown in 
Reference [3]. Interestingly, equation (29) can be used to 
define a trajectory independent potential provide that A is 
carless, and its applications can be found from here to there 
even in thermodynamics [5]. 

IV. CONCLUSION 
In this paper we have investigated the space rotation 

transformation in detail. The rotational transformation 
matrices are derived in a clear and simple approach by 
assuming length invariance. The rotational invariance of 
scalars and covariance of vectors are discussed with physical 
examples. We hope this paper helps to understand the 
mathematical structure of space rotation, which is a prevailing 
type of motion in both fundamental physics and mechanical 
engineering. Furthermore, the method can be easily 
generalized to derive the Lorentz transformation under four-
dimensional spacetime and will be discussed in a subsequent 
paper [6]. 
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