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Abstract—We derive the Lorentz transformation matrix via 
the invariance of spacetime interval. The derivation is greatly 
simplified by using hyperbolic functions. The Lorentz scalar and 
the 4-vector are explained via the concept of relativistic 
covariance and the results are applied to relativistic mechanics. 
This paper helps to better understand the mathematical structure 
of special relativity, and may be useful for engineers working 
with relativistic applications such as satellite navigation and 
precision chronometry. 
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I.  INTRODUCTION  
Special relativity is an important part in college physics. 

However, it is always difficult to impart such counterintuitive 
knowledge to students. Although it is easy to use special 
relativity to calculate typical relativistic problems, a complete 
understanding of the physical and mathematical structure of 
special relativity still costs enormous effort. Among all the 
usual confusions about special relativity, the derivation of 
Lorentz transformation is a prominent one. It appears more 
severe when students become to realize that almost all 
theoretical conclusions of special relativity can be attributed to 
the Lorentz transformation. However, this issue is not yet well 
handled in present teaching practice.  

Historically, the derivation of Lorentz transformation in 
Einstein’s original article was not an easy nut to digest, 
because of the profound philosophical assumptions he had 
used [1]. Later on Minkowski proposed that the Lorentz 
transformation can be derived solely from the invariance of 
spacetime interval [2], which is equivalent to Einstein’s 
proposition on constant speed of light. Although the derivation 
is clear in this approach, it is still bypassed in most college 
physics textbooks. 

Here we try to use the most concise procedure to derive the 
Lorentz transformation following the Minkowski’s approach. 
Meanwhile, we have shown in a preceding article [3] that the 
rotational transformation can be derived using the rotational 
invariant (i.e., the length square). Readers may find the 
method and ideology in this article are similar to those in 
Reference [3]. The only significant difference is perhaps the 
hyperbolic functions used herein instead of the trigonometric 
functions. By comparing with the space rotation, the ‘Lorentz 
boost’ may be tentatively understood as a ‘special rotation’ in 

the Minkowski space. Finally, to complete the topic we further 
introduced the concept of Lorentz scalar and 4-vector, as well 
as their application in physics, in analogy to what have done 
for rotational transformation in References [4-7]. 

II. INVARIANCE OF SPACE-TIME INTERVAL 
The null result of Michelson–Morley experiment [8] 

indicates that the speed of light is constant and isotropic 
irrespective of the motion of the earth. Einstein further 
generalizes it to the famous postulation: the principle of 
invariance of light speed. That is to say, a spherical light wave 
observed in an inertial reference frame Σ  described by 

2 2 2 2( )x y z ct+ + =      (1) 

preserves its spherical form in another inertial reference frame 
'Σ  as 

2 2 2 2( ') ( ') ( ') ( ')x y z ct+ + =     (2) 

Equation (1) and (2) can be rearranged as 

2 2 2 2 2 2 2 2( ') ( ') ( ') ( ') 0w x y z w x y z− − − = − − − =  (3) 

where we have used w ct=  and ' 'w ct=  for convenience. 
Minkowski inspected equation (3) and made a mental jump to 
point out that any event with space-time coordinate (w, x, y, z) 
in one inertial reference frame appears with coordinate (w’, x’, 
y’, z’) in another inertial reference frame according to the 
equality 

2 2 2 2 2 2 2 2 2( ') ( ') ( ') ( ')w x y z w x y z s− − − = − − − ≡ (4) 

where s2 is the square of space-time interval. The 
Minkowski’s postulation can be summarized as the invariance 
of space-time interval between inertial reference frames. 

III. LORENTZ TRANSFORMATION 
Now we seek to reproduce the Lorentz transformation 

according to equation (4). To simplify the derivation we 
assume the Lorentz boost is along the x-direction, i.e., the y 
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and z coordinates are untouched. In this case the equation (4) 
reduces to  

2 2 2 2( ') ( ')w x w x− = −     (5) 

Assume the transformation is linear and homogenous, i.e., 

'
'

w aw bx
x cw dx
= +

 = +
     (6) 

where the coefficients a, b, c, and d are to be determined. 
Inserting equation (6) into (5) we find 

2 2

2 2 2 2 2 2

2 2

( ) ( )
( ) ( ) 2( )

aw bx cw dx
a c w d b x ab cd wx

w x

+ − +

= − − − + −

= −

 

       (7) 

By equating the corresponding terms of w and x we obtain the 
following set of equations 

2 2

2 2

1
1
0

a c
d b
ab cd

 − =
 − =
 − =

     (8) 

The first equation in (8) suggest that a and c can be denoted by 
the hyperbolic functions, without loss of generality, as 

cosh
sinh

a
c

θ
θ

=
 =

      (9) 

where θ  is an arbitrary parameter. Similarly, the second 
equation in (8) suggest that 

sinh
cosh

b
d

ξ
ξ

=
 =

     (10) 

where  ξ  is another arbitrary parameter. Inserting the 
equations (9) and (10) into the last equation of (8) it follows 
that 

cosh sinh sinh cosh 0θ ξ θ ξ− =    (11a) 

i.e.,  

sinh( ) 0ξ θ− =      (11b) 

which is equivalent to 

θ ξ=      (12) 

Now the transformation (6) is simply denoted by 

' cosh sinh
' sinh cosh

w w x
x w x

ξ ξ
ξ ξ

= +
 = +

    (13) 

In this formalism ( , )ξ ∈ −∞ ∞  is a real number to be 
determined. Assume v is the Lorentz boost velocity, then the 
origin of the reference frame 'Σ  must move with velocity v in 
the reference frame Σ , i.e.,  

' 0 sinh cosh 0

tanh

x w x
x v
ct c

ξ ξ

ξ

= ⇒ + =

⇒ = − = −
   (14) 

Because 1 tanh 1ξ− ≤ ≤ , the speed v can not exceed the 
vacuum speed of light c. Furthermore, using  

2

1cosh
1 tanh

sinh cosh tanh

ξ
ξ

ξ ξ ξ

 =
−

 =

    (15) 

and making the substitutions 

2

tanh
1

1

β ξ

γ
β

≡ −

 ≡ −

     (16) 

equations (13) can be rewritten as 

' ( )
' ( )

w w x
x x w

γ β
γ β

= −
 = −

     (17) 

Manifestly, equations (18) are the familiar form of Lorentz 
transformation. Finally, we can package the Lorentz 
transformation (13) into a 4 4×  matrix form  
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0 0

1 1

2 2

3 3

' cosh sinh 0 0
' sinh cosh 0 0
' 0 0 1 0
' 0 0 0 1

x x
x x
x x
x x

ξ ξ
ξ ξ

    
    
    =
    
    

    

  (18) 

where the coordinates (w, x, y, z) are renamed as x=(x0, x1, x2, 
x3) for convenience. For Lorentz boost at an arbitrary direction, 
we can always firstly perform two 3d space rotations in the 
two reference frames, respectively, to turn the x and x’ axes to 
the direction of the relative velocity, and then apply the 
equation (18). 

 

IV. LORENTZ SCALAR AND 4-VECTORS IN MINKOWSKI SPACE 
Analogous to the rotational scalar in 3d configuration 

space, we can define a Lorentz scalar in the Minkowski space 
as an invariant under the Lorentz transformation. As shown by 
the derivation in last section, the transformation (18) preserves 
the square of space-time interval  

2 2 2 2 2
0 1 2 3s x x x x= − − −     (19) 

therefore s2 is a Lorentz scalar. Furthermore, if a 3d vector (A1, 
A2, A3) can be upgraded into a 4-component quantity A=(A0, 
A1, A2, A3), it is regarded as a 4-vector if it abides the same 
transformation as in (18) under a Lorentz boost, i.e., 

0 0

1 1

2 2

3 3

' cosh sinh 0 0
' sinh cosh 0 0
' 0 0 1 0
' 0 0 0 1

A A
A A
A A
A A

ξ ξ
ξ ξ

    
    
    =
    
    

    

  (20) 

Obviously, the space-time coordinates x=(x0, x1, x2, x3) itself is 
a 4-vector. Moreover, the ‘Minkowski length square’ of a 4-
vector 

2 2 2 2 2
0 1 2 3A A A A= − − −A     (21) 

is also a Lorentz scalar according to the property of Lorentz 
transformation. 

Prepared with above knowledge, we see that the proper 
time  

2 2 2 2
0 1 2 3

1d dx dx dx dx
c

τ = − − −    (22) 

is a Lorentz scalar. The proper time for a moving particle is 
best calculated in a reference frame 'Σ  in which the particle is 
at rest, i.e., dx1’=dx2’=dx3’=0, such that  

2 2 2 2 2
1 2 3

1 ' ' ' '

'
cosh( )

d c dt dx dx dx
c

dt dtdt

τ

ξ γ

= − − −

= = =
−

   (23) 

And we see that to be Lorentz covariant the 4-velocity U must 
have the form 

( )

0 1 2 3

0 31 2

( , , , )

, , ,

,

dU U U U
d

dx dxdx dx
d d d d
c

τ

τ τ τ τ
γ

≡ =

 =  
 

=

xU

v

    (24) 

Consequently the 4-momentum is defined as the mass 
multiplied with the 4-velocity, i.e., 

( ) ( )
0 1 2 3( , , , )

, ,

dP P P P m
d

m c mc
τ

γ γ

≡ =

= =

xP

v p
    (25) 

where the mass m is a Lorentz scalar. Then the Minkowski 
length square of the 4-momentum P is a Lorentz scalar, i.e.,  

2 2 2 2 2 2 2m c p m cγ γ− =     (26) 

where the right hand term is obtained in a reference frame in 
which the particle is at rest. Einstein particularly inspected the 
zeroth component of P and pointed out that 

2

0 2 2

1
1 /

mc EP mc
c cv c

γ= = ⋅ ≡
−

   (27) 

where E is the total relativistic energy of a moving particle. 
Moreover, he coined another terminology, the relativistic 
momentum, as 

p pγ=       (28) 

By substituting (27) and (28) into (26) we finally arrive at the 
famous mass-energy equation 

2 2 2 2 4E p c m c= +      (29) 

V. CONCLUSION 
In this paper we have reviewed the Lorentz transformation 

in detail. The Lorentz transformation matrix is derived by 
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assuming Lorentz invariance in the four-dimensinal spacetime. 
The derivation is shown with great simplification by applying 
hyperbolic functions. The invariance of Lorentz scalars and 
covariance of 4-vectors are discussed with physical examples 
to complete the topic. We hope this paper is helpful to those 
who are confused by the mathematical structure of special 
relativity. Engineers working with satellite navigation and 
precision chronometry may also find this paper beneficial 
because relativistic effects are significant in such applications. 
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