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Abstract—The recent growth in network usage has motivated 
the creation of new malicious code for various purposes, 
including economic ones. Today’s signature-based anti-viruses 
are very accurate, but cannot detect new malicious code. 
Recently, classification algorithms were employed successfully 
for the detection of unknown malicious code. However, most of 
the studies use byte sequence n-gram representation of the binary 
code of the executable files on windows. We propose the use of 
Dalvik Operation Code on Android, generated by disassembling 
the application. We then use n-gram of the operation code as 
features for the classification process. We present a full 
methodology for the detection of unknown malicious code, based 
on text categorization concepts. The experiment results show that 
the method results are in a high accuracy rate. 
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I.  INTRODUCTION  
Anti-virus skill is mainly based on two methods: signature-

based methods, specialists only determine a signature for a new 
malware application after it had damaged computers [24]. So, 
they are useless against unknown malicious code. The second 
approach involves heuristic-based methods, which are based on 
rules defined by experts that define a malicious behavior, or a 
benign behavior, in order to enable the detection of unknown 
malicious codes. Other proposed methods include behavior 
blockers, which attempt to detect sequences of events in 
operating systems, and integrity checkers, which periodically 
check for changes in files and disks [6]. However, besides the 
fact that these methods can be bypass by viruses, their main 
drawback is that, by definition, they can only detect the 
presence of a malicious code after it has been executed [10]. 

A great amount of research applying the anomaly detection 
approach for finding malware files is conducted nowadays [26]. 

In such studies, usually byte sequences of executable 
binaries are analyzed to find deviations from benign software 
behavior [5]. Study proposes a method to analyze the binary 
content of files using n-gram analysis and efficient statistical 
modeling techniques in order to determine the validity of file 
type in network traffic flows or on a local disk [9]. In paper 
[11], byte sequence frequencies are investigated to profile 
benign software binaries and identify malicious executables as 
outliers or anomalies. The investigation uses the principal 
component analysis and a one-class support vector machine, 
without predefining the malicious patterns to be classified. A 
detection model based on byte frequency to deal with the 
problem of malware variants detection is proposed in [11]. The 
authors claim that if a suspicious malware is similar to any 
known malware in terms of byte frequency the suspicious 
malware is determined to be a variant of the latter. 

Recent studies have investigated the ability of operational 
codes (opcodes) to detect malicious software [12-14]. An 
opcode is the portion of a machine language instruction that 
specifies the operation to be performed. Opcodes reveal 
significant statistical differences between malware and 
legitimate software and even single opcodes are able to serve 
as the basis for the detection of malicious executables [12]. 
In[13], detection of unknown malicious code is based on 
previously seen examples and carried out with the help of 
opcode n-gram representation and several well-known 
classifiers. A new method for unknown malware detection 
using a data-mining-based approach is proposed in [14]. The 
method is based on the frequency of appearance of opcode-
sequences and on such data-mining algorithms as decision trees, 
support vector machines, knearest neighbors and Bayesian 
networks [21][29]. 

In this study, we come up with a methodology for 
malicious code categorization based on concepts from text 
categorization.  
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The rest of the paper is organized as follows. The extraction 
and selection of feature is considered in Section II. Section III 
introduces the algorithm of random forest and scikit-learn tool. 
In Section IV, we present several simulation results to evaluate 
the algorithm proposed with ROC. Finally, Section V draws 
the conclusions. 

II. FEATURE EXTRACTION AND SELECTION 

A. Data Creation  
We create a dataset of malicious and benign Android 

application package(APK). The malicious files are acquired 
from VirusShare website. The benign files are downloaded 
from one mobile application of yingyongbao. An APK file is 
an archive that usually contains the following files and 
directories: META-INF, lib, res, res, assets, 
AndroidManifest.xml, resources. arsc and calss.dex. Among 
the files, class.dex contains classes compiled in the dex file 
format understandable by the Dalvik virtual machine. To 
acquire the smali files, we disassembled the class.dex by 
Apktool [23][27][28]. Using python, we merge whole. smali 
files in the directory of smali.   

B. N-gram Models 
In the fields of computational linguistics and probability, an 

n-gram is a contiguous sequence of n items from a given 
sequence of text or speech. The items can be phonemes, 
syllables, letters, words or base pairs according to the 
application. The n-grams typically are collected from a text or 
speech corpus. When the items are words, n-grams may also be 
called shingles [2-4]. 

An n-gram of size 1 is referred to as a "unigram"; size 2 is a 
"bigram" (or, less commonly, a "digram"); size 3 is a "trigram". 
Larger sizes are sometimes referred to by the value of n, e.g., 
"four-gram", "five-gram", and so on. 

To extract features from each such sequence, n-gram model 
is applied. N-gram models are widely used in statistical natural 
language processing and speech recognition. An ngram is a 
sub-sequence of n overlapping items (characters, letters, words, 
etc) from a given sequence[15-16]. For example, the result of 
the application of 2-gram character model to the string 
“benign” is “be”, “en”, “ni”, “ig”, “gn”. Specially, we are 
dealing with this as “Table.1”.We use the frequency of the term 
frequency (TF) to represent the feature. 

TABLE I.  N-GRAM MODEL 

N-Gram 
Model Operation Code 

Opcode 
name 

iput-object vx, vy, field_id, iget-object vx, vy, field_id, 
if-eq vx, vy, target, move-result vx, return-object vx, goto 
target 

Classfy 
and 

describe 

P(save data), V(get data), I(if), M(move), R(return), 
G(jump) 

2-Gram PV, VI, IM, MR, RG 

C. Feature Selection 
In ML applications, the large number of features (many of 

which do not contribute to the accuracy and may even decrease 
it) in many domains presents a significant problem [17][25]. In 

our study, the reduction of the number of features is crucial and 
must be performed while maintaining a high level of accuracy. 
This is due to the fact that the vocabulary size may exceed 
millions of features; far more than can be processed by any 
feature selection tool within a reasonable period of time. 
Additionally, it is important to identify the terms that appear in 
most of the files in order to avoid vectors that contain many 
zeros. Thus, we extracted the 500 features (i.e., OpCode n-
grams patterns) with the highest Document Frequency values 
and on which three feature selection methods were later applied. 

III. ALGORITHM 

A. Random Forest 
The first algorithm for random decision forests was created 

by Tin Kam Ho [1] using the random subspace method,[8] 
which, in Ho's formulation, is a way to implement the 
"stochastic discrimination" approach to classification proposed 
by Eugene Kleinberg [10-12]. 

An extension of the algorithm was developed by Leo 
Breiman and Adele Cutler,[8] and "Random Forests" is their 
trademark.[15] The extension combines Breiman's "bagging" 
idea and random selection of features, introduced first by Ho[1] 
and later independently by Amit and Geman[16] in order to 
construct a collection of decision trees with controlled variance. 

The random forests algorithm (for both classification and 
regression) is as follows: 

• Draw ntree bootstrap samples from the original data. 

• For each of the bootstrap samples, grow an unpruned 
classification or regression tree, with the following 
modification: at each node, rather than choosing the 
best split among all predictors, randomly sample mtry 
of the predictors and choose the best split from among 
those variables. (Bagging can be thought of as the 
special case of random forests obtained when mtry = p, 
the number of predictors.) 

• Predict new data by aggregating the predictions of the 
ntree trees (i.e., majority votes for classification, 
average for regression). 

An estimate of the error rate can be obtained, based on the 
training data, by the following: 

• At each bootstrap iteration, predict the data not in the 
bootstrap sample (what Breiman calls “out-of-bag”, 
or OOB, data) using the tree grown with the bootstrap 
sample. 

• Aggregate the OOB predictions. (On the average, each 
data point would be out-of-bag around 36% of the 
times, so aggregate these predictions.) Calculate the 
error rate, and call it the OOB estimate of error rate. 

In random forests each tree in the ensemble is built from a 
sample drawn with replacement (i.e., a bootstrap sample) from 
the training set [22]. In addition, when splitting a node during 
the construction of the tree, the split that is chosen is no longer 
the best split among all features [19]. Instead, the split that is 
picked is the best split among a random subset of the features. 
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As a result of this randomness, the bias of the forest usually 
slightly increases (with respect to the bias of a single non-
random tree) but, due to averaging, its variance also decreases, 
usually more than compensating for the increase in bias, hence 
yielding an overall better mode [1][18]. 

B. Scikit-learn 
  Finally we use random forest algorithm by scikit-learn: 

simple and efficient tools for data mining and data analysis. 

The main parameters to adjust when using these methods is 
n_estimators and max_features. The former is the number of 
trees in the forest. The larger the better, but also the longer it 
will take to compute. In addition, those results will stop getting 
significantly better beyond a critical number of trees. The latter 
is the size of the random subsets of features to consider when 
splitting a node. The lower the greater the reduction of variance, 
but also the greater the increase in bias. Empirical good default 
values are max_features=n_features for regression problems, 
and max_features=sqrt(n_features) for classification tasks 
(where n_features is the number of features in the data). So, we 
select the latter. Good results are often achieved when setting 
max_depth=None in combination with min_samples_split=1 
(i.e., when fully developing the trees). Here, max_depth = 100. 
Bear in mind though that these values are usually not optimal, 
and might result in models that consume a lot of RAM. The 
best parameter values should always be cross-validated. In 
addition, note that in random forests, bootstrap samples are 
used by default (bootstrap=True) while the default strategy for 
extra-trees is to use the whole dataset (bootstrap=False). When 
using bootstrap sampling the generalization accuracy can be 
estimated on the left out or out-of-bag samples. This can be 
enabled by setting oob_score=True. 

IV. NUMERICAL RESULT 

A. Feature Representation vs. N-Grams 
We first wanted to find the best terms representation (i.e., 

TF or TFIDF) [20]. Figure 1 and Figure 2 presents the mean 
ROC of the combinations of the term representation and n-
grams size. Through calculating the AUC of ROC, the feature 
representation by TF was better, which is good because 
maintaining the TFIDF requires additional computational 
efforts each time a malcode or benign files are added to the 
collection. Following this observation we opted to use the TF 
representation for the rest of our experiments. 

. 

Fig. 1. Feature Representation by TF 

B. Feature Selections and Top Selections 
To identify the best feature selection method and the top 

number of features, we calculated the mean TPR, FPR, 
accuracy of DF and FS [30]. Generally, DF outperformed on 
all sizes of top features. The DF is a simple feature selection 
method which favors features which appear in most of the files. 
This can be explained by its criterion, which has an advantage 
for fewer features. In the other method, the lack of appearances 
in many files might create zeroed vectors and might 
consequently lead to a lower accuracy level. 

 
Fig. 2. Feature Representation by TF-IDF 

C. Classify 
1) Decision tree learning 
  Decision trees are a popular method for various machine 

learning tasks. Tree learning "come[s] closest to meeting the 
requirements for serving as an off-the-shelf procedure for data 
mining", say Hastie et al., because it is invariant under scaling 
and various other transformations of feature values, is robust to 
inclusion of irrelevant features, and produces inspectable 
models. However, they are seldom accurate. 
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2) Tree bagging 
  The training algorithm for random forests applies the 

general technique of bootstrap aggregating, or bagging, to tree 
learners. Given a training set X = x1, ..., xn with responses Y = 
y1, ..., yn, bagging repeatedly (B times) selects a random 
sample with replacement of the training set and fits trees to 
these samples: 

  For b = 1, ..., B: 

  Sample, with replacement, n training examples from X, Y; 
call these Xb, Yb. 

  Train a decision or regression tree fb on Xb, Yb. 

  After training, predictions for unseen samples x' can be 
made by averaging the predictions from all the individual 
regression trees on or by taking the majority vote in the case of 
decision trees. 

  This bootstrapping procedure leads to better model 
performance because it decreases the variance of the model, 
without increasing the bias. This means that while the 
predictions of a single tree are highly sensitive to noise in its 
training set, the average of many trees is not, as long as the 
trees are not correlated. Simply training many trees on a single 
training set would give strongly correlated trees (or even the 
same tree many times, if the training algorithm is deterministic); 
bootstrap sampling is a way of de-correlating the trees by 
showing them different training sets. 

3) From bagging to random forests 
  The above procedure describes the original bagging 

algorithm for trees. Random forests differ in only one way 
from this general scheme: they use a modified tree learning 
algorithm that selects, at each candidate split in the learning 
process, a random subset of the features. This process is 
sometimes called "feature bagging". The reason for doing this 
is the correlation of the trees in an ordinary bootstrap sample: if 
one or a few features are very strong predictors for the response 
variable (target output), these features will be selected in many 
of the B trees, causing them to become correlated. An analysis 
of how bagging and random subspace projection contributes to 
accuracy gains under different conditions is given by Ho [1]. 

We finally use the equal number test files to verify the 
algorithm with the represent of TF and the feature selection of 
DF. It has higher accuracy rate. 

V. CONCLUSION 
In this research, we employ a malware detection approach 

to detect unknown malware. Smali files are analyzed in order 
to extract operation code sequences and n-gram models are 
employed to discover essential features from these sequences. 
The Random Forest is applied to analyze feature vectors 
obtained and to build a benign software behavior model. This 
model is then used to detect new malicious applications. Thus, 
the algorithm proposed allows one to detect malware unseen 
previously.  
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