
Detecting Unknown Malware on Android by
Machine Learning Using the Feature of Dalvik

Operation Code
Wang Quanmin

Department of Information Technology,
Beijing University of Technology

Beijing, China
wangqm@bjut.edu.cn

Li Zhenguo
Department of Information of Technology,

Beijing University of Technology
Beijing, China

13120006042@163.com

Zheng Shuang, Gu Shi, Sun Yanfeng, Wang Kaiyang
Department of Information of Technology,

Beijing University of Technology
Beijing, China

Abstract—The recent growth in network usage has motivated
the creation of new malicious code for various purposes,
including economic ones. Today’s signature-based anti-viruses
are very accurate, but cannot detect new malicious code.
Recently, classification algorithms were employed successfully
for the detection of unknown malicious code. However, most of
the studies use byte sequence n-gram representation of the binary
code of the executable files on windows. We propose the use of
Dalvik Operation Code on Android, generated by disassembling
the application. We then use n-gram of the operation code as
features for the classification process. We present a full
methodology for the detection of unknown malicious code, based
on text categorization concepts. The experiment results show that
the method results are in a high accuracy rate.

Keywords—malicious; Dalvik operation code; detection

I. INTRODUCTION
Anti-virus skill is mainly based on two methods: signature-

based methods, specialists only determine a signature for a new
malware application after it had damaged computers [24]. So,
they are useless against unknown malicious code. The second
approach involves heuristic-based methods, which are based on
rules defined by experts that define a malicious behavior, or a
benign behavior, in order to enable the detection of unknown
malicious codes. Other proposed methods include behavior
blockers, which attempt to detect sequences of events in
operating systems, and integrity checkers, which periodically
check for changes in files and disks [6]. However, besides the
fact that these methods can be bypass by viruses, their main
drawback is that, by definition, they can only detect the
presence of a malicious code after it has been executed [10].

A great amount of research applying the anomaly detection
approach for finding malware files is conducted nowadays [26].

In such studies, usually byte sequences of executable
binaries are analyzed to find deviations from benign software
behavior [5]. Study proposes a method to analyze the binary
content of files using n-gram analysis and efficient statistical
modeling techniques in order to determine the validity of file
type in network traffic flows or on a local disk [9]. In paper
[11], byte sequence frequencies are investigated to profile
benign software binaries and identify malicious executables as
outliers or anomalies. The investigation uses the principal
component analysis and a one-class support vector machine,
without predefining the malicious patterns to be classified. A
detection model based on byte frequency to deal with the
problem of malware variants detection is proposed in [11]. The
authors claim that if a suspicious malware is similar to any
known malware in terms of byte frequency the suspicious
malware is determined to be a variant of the latter.

Recent studies have investigated the ability of operational
codes (opcodes) to detect malicious software [12-14]. An
opcode is the portion of a machine language instruction that
specifies the operation to be performed. Opcodes reveal
significant statistical differences between malware and
legitimate software and even single opcodes are able to serve
as the basis for the detection of malicious executables [12].
In[13], detection of unknown malicious code is based on
previously seen examples and carried out with the help of
opcode n-gram representation and several well-known
classifiers. A new method for unknown malware detection
using a data-mining-based approach is proposed in [14]. The
method is based on the frequency of appearance of opcode-
sequences and on such data-mining algorithms as decision trees,
support vector machines, knearest neighbors and Bayesian
networks [21][29].

In this study, we come up with a methodology for
malicious code categorization based on concepts from text
categorization.

2nd International Conference on Automatic Control and Information Engineering (ICACIE 2017)

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Engineering Research, volume 119

53

The rest of the paper is organized as follows. The extraction
and selection of feature is considered in Section II. Section III
introduces the algorithm of random forest and scikit-learn tool.
In Section IV, we present several simulation results to evaluate
the algorithm proposed with ROC. Finally, Section V draws
the conclusions.

II. FEATURE EXTRACTION AND SELECTION

A. Data Creation
We create a dataset of malicious and benign Android

application package(APK). The malicious files are acquired
from VirusShare website. The benign files are downloaded
from one mobile application of yingyongbao. An APK file is
an archive that usually contains the following files and
directories: META-INF, lib, res, res, assets,
AndroidManifest.xml, resources. arsc and calss.dex. Among
the files, class.dex contains classes compiled in the dex file
format understandable by the Dalvik virtual machine. To
acquire the smali files, we disassembled the class.dex by
Apktool [23][27][28]. Using python, we merge whole. smali
files in the directory of smali.

B. N-gram Models
In the fields of computational linguistics and probability, an

n-gram is a contiguous sequence of n items from a given
sequence of text or speech. The items can be phonemes,
syllables, letters, words or base pairs according to the
application. The n-grams typically are collected from a text or
speech corpus. When the items are words, n-grams may also be
called shingles [2-4].

An n-gram of size 1 is referred to as a "unigram"; size 2 is a
"bigram" (or, less commonly, a "digram"); size 3 is a "trigram".
Larger sizes are sometimes referred to by the value of n, e.g.,
"four-gram", "five-gram", and so on.

To extract features from each such sequence, n-gram model
is applied. N-gram models are widely used in statistical natural
language processing and speech recognition. An ngram is a
sub-sequence of n overlapping items (characters, letters, words,
etc) from a given sequence[15-16]. For example, the result of
the application of 2-gram character model to the string
“benign” is “be”, “en”, “ni”, “ig”, “gn”. Specially, we are
dealing with this as “Table.1”.We use the frequency of the term
frequency (TF) to represent the feature.

TABLE I. N-GRAM MODEL

N-Gram
Model Operation Code

Opcode
name

iput-object vx, vy, field_id, iget-object vx, vy, field_id,
if-eq vx, vy, target, move-result vx, return-object vx, goto
target

Classfy
and

describe

P(save data), V(get data), I(if), M(move), R(return),
G(jump)

2-Gram PV, VI, IM, MR, RG

C. Feature Selection
In ML applications, the large number of features (many of

which do not contribute to the accuracy and may even decrease
it) in many domains presents a significant problem [17][25]. In

our study, the reduction of the number of features is crucial and
must be performed while maintaining a high level of accuracy.
This is due to the fact that the vocabulary size may exceed
millions of features; far more than can be processed by any
feature selection tool within a reasonable period of time.
Additionally, it is important to identify the terms that appear in
most of the files in order to avoid vectors that contain many
zeros. Thus, we extracted the 500 features (i.e., OpCode n-
grams patterns) with the highest Document Frequency values
and on which three feature selection methods were later applied.

III. ALGORITHM

A. Random Forest
The first algorithm for random decision forests was created

by Tin Kam Ho [1] using the random subspace method,[8]
which, in Ho's formulation, is a way to implement the
"stochastic discrimination" approach to classification proposed
by Eugene Kleinberg [10-12].

An extension of the algorithm was developed by Leo
Breiman and Adele Cutler,[8] and "Random Forests" is their
trademark.[15] The extension combines Breiman's "bagging"
idea and random selection of features, introduced first by Ho[1]
and later independently by Amit and Geman[16] in order to
construct a collection of decision trees with controlled variance.

The random forests algorithm (for both classification and
regression) is as follows:

• Draw ntree bootstrap samples from the original data.

• For each of the bootstrap samples, grow an unpruned
classification or regression tree, with the following
modification: at each node, rather than choosing the
best split among all predictors, randomly sample mtry
of the predictors and choose the best split from among
those variables. (Bagging can be thought of as the
special case of random forests obtained when mtry = p,
the number of predictors.)

• Predict new data by aggregating the predictions of the
ntree trees (i.e., majority votes for classification,
average for regression).

An estimate of the error rate can be obtained, based on the
training data, by the following:

• At each bootstrap iteration, predict the data not in the
bootstrap sample (what Breiman calls “out-of-bag”,
or OOB, data) using the tree grown with the bootstrap
sample.

• Aggregate the OOB predictions. (On the average, each
data point would be out-of-bag around 36% of the
times, so aggregate these predictions.) Calculate the
error rate, and call it the OOB estimate of error rate.

In random forests each tree in the ensemble is built from a
sample drawn with replacement (i.e., a bootstrap sample) from
the training set [22]. In addition, when splitting a node during
the construction of the tree, the split that is chosen is no longer
the best split among all features [19]. Instead, the split that is
picked is the best split among a random subset of the features.

Advances in Engineering Research, volume 119

54

https://en.wikipedia.org/wiki/Android_application_package
https://en.wikipedia.org/wiki/Android_application_package

As a result of this randomness, the bias of the forest usually
slightly increases (with respect to the bias of a single non-
random tree) but, due to averaging, its variance also decreases,
usually more than compensating for the increase in bias, hence
yielding an overall better mode [1][18].

B. Scikit-learn
 Finally we use random forest algorithm by scikit-learn:

simple and efficient tools for data mining and data analysis.

The main parameters to adjust when using these methods is
n_estimators and max_features. The former is the number of
trees in the forest. The larger the better, but also the longer it
will take to compute. In addition, those results will stop getting
significantly better beyond a critical number of trees. The latter
is the size of the random subsets of features to consider when
splitting a node. The lower the greater the reduction of variance,
but also the greater the increase in bias. Empirical good default
values are max_features=n_features for regression problems,
and max_features=sqrt(n_features) for classification tasks
(where n_features is the number of features in the data). So, we
select the latter. Good results are often achieved when setting
max_depth=None in combination with min_samples_split=1
(i.e., when fully developing the trees). Here, max_depth = 100.
Bear in mind though that these values are usually not optimal,
and might result in models that consume a lot of RAM. The
best parameter values should always be cross-validated. In
addition, note that in random forests, bootstrap samples are
used by default (bootstrap=True) while the default strategy for
extra-trees is to use the whole dataset (bootstrap=False). When
using bootstrap sampling the generalization accuracy can be
estimated on the left out or out-of-bag samples. This can be
enabled by setting oob_score=True.

IV. NUMERICAL RESULT

A. Feature Representation vs. N-Grams
We first wanted to find the best terms representation (i.e.,

TF or TFIDF) [20]. Figure 1 and Figure 2 presents the mean
ROC of the combinations of the term representation and n-
grams size. Through calculating the AUC of ROC, the feature
representation by TF was better, which is good because
maintaining the TFIDF requires additional computational
efforts each time a malcode or benign files are added to the
collection. Following this observation we opted to use the TF
representation for the rest of our experiments.

.

Fig. 1. Feature Representation by TF

B. Feature Selections and Top Selections
To identify the best feature selection method and the top

number of features, we calculated the mean TPR, FPR,
accuracy of DF and FS [30]. Generally, DF outperformed on
all sizes of top features. The DF is a simple feature selection
method which favors features which appear in most of the files.
This can be explained by its criterion, which has an advantage
for fewer features. In the other method, the lack of appearances
in many files might create zeroed vectors and might
consequently lead to a lower accuracy level.

Fig. 2. Feature Representation by TF-IDF

C. Classify
1) Decision tree learning
 Decision trees are a popular method for various machine

learning tasks. Tree learning "come[s] closest to meeting the
requirements for serving as an off-the-shelf procedure for data
mining", say Hastie et al., because it is invariant under scaling
and various other transformations of feature values, is robust to
inclusion of irrelevant features, and produces inspectable
models. However, they are seldom accurate.

Advances in Engineering Research, volume 119

55

2) Tree bagging
 The training algorithm for random forests applies the

general technique of bootstrap aggregating, or bagging, to tree
learners. Given a training set X = x1, ..., xn with responses Y =
y1, ..., yn, bagging repeatedly (B times) selects a random
sample with replacement of the training set and fits trees to
these samples:

 For b = 1, ..., B:

 Sample, with replacement, n training examples from X, Y;
call these Xb, Yb.

 Train a decision or regression tree fb on Xb, Yb.

 After training, predictions for unseen samples x' can be
made by averaging the predictions from all the individual
regression trees on or by taking the majority vote in the case of
decision trees.

 This bootstrapping procedure leads to better model
performance because it decreases the variance of the model,
without increasing the bias. This means that while the
predictions of a single tree are highly sensitive to noise in its
training set, the average of many trees is not, as long as the
trees are not correlated. Simply training many trees on a single
training set would give strongly correlated trees (or even the
same tree many times, if the training algorithm is deterministic);
bootstrap sampling is a way of de-correlating the trees by
showing them different training sets.

3) From bagging to random forests
 The above procedure describes the original bagging

algorithm for trees. Random forests differ in only one way
from this general scheme: they use a modified tree learning
algorithm that selects, at each candidate split in the learning
process, a random subset of the features. This process is
sometimes called "feature bagging". The reason for doing this
is the correlation of the trees in an ordinary bootstrap sample: if
one or a few features are very strong predictors for the response
variable (target output), these features will be selected in many
of the B trees, causing them to become correlated. An analysis
of how bagging and random subspace projection contributes to
accuracy gains under different conditions is given by Ho [1].

We finally use the equal number test files to verify the
algorithm with the represent of TF and the feature selection of
DF. It has higher accuracy rate.

V. CONCLUSION
In this research, we employ a malware detection approach

to detect unknown malware. Smali files are analyzed in order
to extract operation code sequences and n-gram models are
employed to discover essential features from these sequences.
The Random Forest is applied to analyze feature vectors
obtained and to build a benign software behavior model. This
model is then used to detect new malicious applications. Thus,
the algorithm proposed allows one to detect malware unseen
previously.

REFERENCES
[1] Ho, Tin Kam (1998). "The Random Subspace Method for Constructing

Decision Forests" (PDF). IEEE Transactions on Pattern Analysis and
Machine Intelligence 20 (8): 832–844. doi:10.1109/34.709601.

[2] Abou-Assaleh T, Keselj V, Sweidan R: N-gram based detection of new
malicious code. Proc of the 28th Annual

[3] Hastie, Trevor; Tibshirani, Robert; Friedman, Jerome (2008). The
Elements of Statistical Learning (2nd ed.). Springer. ISBN 0-387-95284-
5.

[4] Kleinberg, Eugene (1996). "An Overtraining-Resistant Stochastic
Modeling Method for Pattern Recognition" (PDF). Annals of Statistics
24 (6): 2319–2349. doi:10.1214/aos/1032181157. MR 1425956.

[5] L. Gordon, M. Loeb, W. Lucyshyn, and R. Richardson. Computer Crime
and Security Survey. Technical report, Computer Security Institute,
2005.

[6] Rieck K, Holz T, Düssel P, Laskov P: Learning and classification of
malware behavior. Conference on Detection of

[7] Moskovitch R, Elovici Y, Rokach L: Detection of unknown computer
worms based on behavioral classification of the host. Computational
Statistics and Data Analysis 2008, 52(9):4544-4566.

[8] G. Ollmann. The evolution of commercial malware development kits
and colour-by-numbers custom malware, Computer Fraud & Security,
pp.4-7, 2008.

[9] W. Li, K. Wang, S. Stolfo, B. Herzog. Fileprints: Identifying file types
by n-gram analysis. Proc. of the IEEE Workshop on Information
Assurance and Security, 2005.

[10] D. Cai, J. Theiler, M. Gokhale. Detecting a malicious executable without
prior knowledge of its patterns. Proc. of the Defense and Security
Symposium. Information Assurance, and Data Network Security, vol.
5812, pp. 1-12, 2005.

[11] S. Yu, S. Zhou, L. Liu, R. Yang, J. Luo. Malware variants identification
based on byte frequency. Proc. of Networks Security Wireless
Communications and Trusted Computing (NSWCTC), vol. 2, pp. 32-35,
2010.

[12] D. Bilar, Opcodes as predictor for malware. International Journal of
Electronic Security and Digital Forensics, pp. 156-168, 2007.

[13] R. Moskovitch, C. Feher, N. Tzachar, E. Berger, M. Gitelman, S. Dolev
and Y. Elovici. Unknown Malcode Detection Using OPCODE
Representation. Proc. of the 1-st European Conference on Intelligence
and Security Informatics (EuroISI ’08), 2008.

[14] I. Santos, F. Brezo, X. Ugarte-Pedrero, P. G. Bringas. Opcode sequences
as representation of executables for data-mining-based unknown
malware detection. Information Sciences, vol. 231, pp. 64-82, 2013.

[15] C. Y. Suen. n-Gram Statistics for Natural Language Understanding and
Text Processing. Pattern Analysis and Machine Intelligence, IEEE
Transactions. Vol. PAMI-1, Is. 2. pp. 164-172. 1979.

[16] T. Hirsimaki, J. Pylkkonen, M. Kurimo. Importance of High-Order
NGram Models in Morph-Based Speech Recognition. Audio, Speech,
and Language Processing, IEEE Tran., Vol. 17, Is. 4. pp. 724-732. 2009.

[17] K. Kira, L. Rendell. The feature selection problem: traditional methods
and new algorithm. Proc. of Conference on Artificial Intelligence, 1992.

[18] Freund Y, Schapire RE: A brief introduction to boosting. International
Joint Conference on Artificial Intelligence Morgan Kaufmann Publishers
Inc; 1999, 1401-1406.

[19] Weiss GM, Provost F: Learning when training data are costly: the effect
of class distribution on tree induction. Journal of Artificial Intelligence
Research 2003, 19:315-354.

[20] W. Li, K. Wang, S. Stolfo, B. Herzog. Fileprints: Identifying file types
by n-gram analysis. Proc. of the IEEE Workshop on Information
Assurance and Security, 2005.

[21] I. Santos, F. Brezo, X. Ugarte-Pedrero, P. G. Bringas. Opcode sequences
as representation of executables for data-mining-based unknown
malware detection. Information Sciences, vol. 231, pp. 64-82, 2013.

[22] Kam HT: Random Decision Forest. Proc of the 3rd International
Conference on Document Analysis and Recognition 1995, 278-282.

Advances in Engineering Research, volume 119

56

[23] Linn C, Debray S: Obfuscation of executable code to improve resistance
to static disassembly. Proc of the 10th ACM conference on Computer
and communications security ACM Press; 2003, 290-299.

[24] Henchiri, O., Japkowicz, N.: A Feature Selection and Evaluation
Scheme for Computer Virus Detection. In: Proceedings of ICDM 2006,
Hong Kong, pp. 891–895 (2006)

[25] Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: special issue on
learning from imbalanced data sets. SIGKDD Explorations Newsletter
6(1), 1–6 (2004)

[26] D.H. Shih, B. Lin, H.S. Chiang, M.H. Shih, "Security aspects of mobile
phone virus: a critical survey," Industrial Management & Data Systems,
vol. 108(4), 2008, pp. 478-494.

[27] J. Cheng, S.H. Wong, H. Yang, S. Lu, "SmartSiren: virus detection and
alert for smartphones," Proc. International Conference on Mobile
Systems, Applications and Services, 2007.

[28] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev, C. Glezer,
"Google Android: A Comprehensive Security Assessment," IEEE
Security and Privacy, vol. 8(2), March/April 2010, pp. 35-44.

[29] Shabtai A, Moskovitch R, Feher C, et al. Detecting unknown malicious
code by applying classification techniques on OpCode patterns[J].
Security Informatics, 2012, 1(1):1-22.

[30] Bin Cao, Dou Shen, Jian-Tao Sun, Qiang Yang, Zheng Chen. Feature
selection in a kernel space. Proc. of the 24th international conference on
Machine learning (ICML’ 07), pp. 121-128. 2007.

Advances in Engineering Research, volume 119

57

	I. Introduction
	II. Feature Extraction and Selection
	A. Data Creation
	B. N-gram Models
	C. Feature Selection

	III. Algorithm
	A. Random Forest
	B. Scikit-learn

	IV. Numerical Result
	A. Feature Representation vs. N-Grams
	B. Feature Selections and Top Selections
	C. Classify
	1) Decision tree learning
	2) Tree bagging
	3) From bagging to random forests

	V. Conclusion
	References

