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Abstract—The issue on neural network method to solve 
compressed sensing problem is concerned. Combined with 
optimization technique, nonsmooth analysis theory, differential 
inclusion theory, and set-valued analysis method, a classical 
approximate compressed sensing model with dense noise is 
transformed into a differential inclusion neural network model. 
On the basis of existence and stable theory, some existence and 
stability results are also given.  
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I.  INTRODUCTION  
In recent years, compressed sensing (CS) theory [1.2] 

arouses many domestic and foreign scholars’ research interest. 
It is widely applied to many different research fields, such as 
various compression imaging, MRI and CT, face recognition, 
variable selection, biological computing, remote sensing, 
LASSO and so on [3-5]. A typical compressed sensing model 
under-determined linear system of equations can be found by 
solving the following so-called “ 0l -norm”  minimization 
problem, i.e., 

                              ,..||||min 0 bAXtsX
nRX

=
∈

              (1) 

where knk RbnkRA ∈<<∈ × ),( , nR is a n-dimensional 
vector space; 0|||| X denotes the number of nonzero 
components in X . As pointed out in [6], although problem (1) 
is widely applied in many different science fields, it is NP-hard, 
this makes the theoretical research for problem (1) becomes 
very difficult. Recently, in order to overcome this problem, 
many different new approximate models for (1) are established. 
Among all of these approximate models, basis pursuit (BP) is 
the most popular one. It becomes the best alternative model for 
problem (1), since the convex envelope of 0|||| X  is 1|||| X , 

where ∑=
i

ixX |||||| 1 is the 1l norm of X . “Basic Pursuit 

problem”[7] was proposed as follows  

                             ...||||min 1 bAXtsX
nRX

=
∈

               (2) 

 If term b  in problem (2) is contaminated by small dense 
noise, a natural approach to relax the constraint in (2) yields the 
following model 

                         ,||-||..||||min 21 ε<
∈

bAXtsX
nRX

       (3) 

where 2|||| X  is Euclidean norm of X , andε  is non-negative 
parameter. By convex analysis theory, problem (3) can be 
equivalently transformed into Lagrangian version, i.e., the 
following 1l − 2l  minimization 

                            ,||||||-||
2
1min 1

2
2 XAXb

nRX
τ+

∈
             (4) 

where 0>τ  is a positive constant. 

Obviously, problem (4) is a convex optimization problem, 
but not a smooth one, since term ∑=

i
ixX |||||| 1 is not 

differentiable. In order to solve this approximate compressed 
sensing problem (4) with dense noise, many different methods 
are proposed, such as smooth method, subdifferential method, 
filling method, and so on. In what follows, this paper attempts 
to utilize differential inclusion neural network to handle this 
problem. 

II. DIFFERENTIAL INCLUSION NEURAL NETWORK MODEL 
DESCRIPTION 

Since problem (4) is a nonsmooth optimization problem in 
essence. Thus we can utilize the relationship between 
nonsmooth optimization and dynamic system to establish new 
differential inclusion neural network for model (4). Before 
proceed, we first introduce some basic definitions and classical 
results as follows. 

A. Basic Definitions 

Definition 1. Suppose nR⊂Ω , then )(: xFxF →  is 

called a set-valued function from nR→Ω , if for each point 
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Ω∈x , the corresponding image set )(xF is a nonempty and 

closed set satisfying nRxF ⊂)( . 

Definition 2. A function RRxf n →:)( is said to be 

Lipschitz near nRx∈ , if there exist positive number δ  and 
ε such that for any nRxx ∈21,  satisfies δ<− |||| 1 xx and 

δ<− |||| 2 xx , we have |||||)()(| 2121 xxxfxf −≤− ε . If  

RRxf n →:)( is Lipschitz near any point nRx∈ , then 

)(xf is also said to be locally Lipschitz in nR . 

Definition 3. If RRxf n →:)( is Lipschitz near point x , 
then the generalized directional derivative of )(xf at point 

x in the direction nR∈υ is given by 

s
yfsyfxf

s
xy

)()(suplim);(
0

0 −+
=

+→
→

υυ . 

Definition 4. The  Clarke’s generalized gradient of )(xf at 
point x is defined as 

},);(:{)( 0 nTn RyxfRyxf ∈∀≥∈=∂ υυυ . 

When RRxf n →:)( is locally Lipschitz in nR , and 

differentiable for almost all nRx∈ , then the Clarke’s 
generalized gradient of )(xf at point x is equivalent to 

},,:)(lim{)( Ε∉Ν∉→∂Κ=∂
∞→ nnnnn

xxxxxfxf , 

where )(⋅Κ denotes the closure of convex hull, nR⊂Ν is an 

arbitrary set with measure zero, and nR⊂Ε is the set points 
where )(xf  is not differentiable. 

B. Classical Results Introduction of Projection Neural 
Network for Nonsmooth Optimization Subject to Linear 
Equality and Bound Constraint  
Consider the following general nonsmooth optimization 

problem 

minimize )(xf  

                                 subject to bAx =                             (5) 

Ω⊂x  

where nT
n Rxxxx ∈= ),,,( 21  , RRxf n →:)(  is an 

objective function which is not necessarily convex and smooth. 
By using optimization technique, nonsmooth analysis theory, 
differential inclusion theory, set-valued analysis method, and   
Clarke’s subdifferential results, Liu and Wang in [8] 
established the following projection neural network to solve 
problem (5) 

)(

))()(())()(()(

yPx

qqyPMIfyPyMIyMP
dt
dy

Ω

ΩΩΩ

=

++−∂+−−−−∈ε  (6)  

where bAAAqAAAAM TTTT 11 )(,)( −− == , )(xf∂ is the 
Clarke’s generalized gradient of )(xf , and )(⋅ΩP is a 
projection operator defined by 

||||minarg)( υ
υ

−=
Ω∈Ω uuP . 

    Specially, when problem (5) degenerates into the following 
form 

minimize )(xf  

                                 subject to bAx = .                            (7) 

then problem (7) can be solved by the following projection 
neural network 

         qqxMIfMIMx
dt
dx

++−∂−−−∈ ))(()(ε  .  (8) 

    When problem (5) degenerates into the following form 

minimize )(xf  

                                    Ω⊂x                                         (9) 

then problem (9) can be solved by the following neural 
network 

                      ))(()( yPfyPy
dt
dy

ΩΩ ∂−+−∈ε              (10) 

                                            )(yPx Ω= . 

Fact 1 (existence result):  

    Assume that the objective function )(xf in problem (5) , (7) 
and (9) is pseudoconvex on the feasible region. Then  

nRx ∈* is an optimal solution of problem (5), (7) and (9)  if 
and only if there exists an equilibrium point nRy ∈* for 

system (6), (8) and (10) such that )( ** yPx Ω= . 

Fact 2 (stability results): 

(1) If function )(xf in problem (5) is convex on Ω , then for 
any initial value 0y  , the output vector of neural network (6)  
is globally convergent to the optimal solution set Μ  if state 
vector )(ty is bounded and  

Μ∈⇔=−−Θ∈∀ xxxx T 0)()(, ** γγ  

where )(),(, *** xfxfx ∂∈∂∈Μ∈ γγ . 

(2) If function )(xf in problem (7) is pseudoconvex on the  

equality constraint set, then for any initial value 0x  , the state 
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vector of neural network (8)  is globally convergent to the 
optimal solution set Μ  

0)),((lim =Μ
∞→

txdist
t

. 

(3) If function )(xf in problem (9) is pseudoconvex on the 

bounded constraint set Ω , then for any initial value 0y  , the 
output vector of neural network (10)  is globally convergent to 
the optimal solution set Μ  if the output vector )(ty is 
bounded  

0)),((lim =Μ
∞→

txdist
t

. 

C. Differential Inclusion Neural Network for Compressed 
Sensing 

    From definition 4, for 1l  norm 1|||| ⋅ , the  subdifferential of 

1|||| x at *x is 1|||| x∂ , and the ith component is defined as 

             








<
=−
>−

=∂
01
0]1,1[
01

||||
*

*

*

1
*

i

i

i

i

x
x
x

x .                      (11) 

    Thus  

11 ||||)(||)(|| xMIqxMI T ∂−=+−∂ . 

    From (7) and (8), the following differential inclusion neural 
network can be established to solve problem (2) 

   qxMIMIMx
dt
dx T +∂−−−−∈ 1||||))((ε .      (12) 

Since M is a projection matrix, this means that MM =2 . 
Utilizing the property of 1|||| x∂ , Liu and Wang further 
simplified model (12)  as following projection neural network 
[9] 

             qzPMIMz
dt
dz

+−−−= Ω )()2(ε ,             (13) 

   )(zPzx Ω−= ,   

where },,2,1,11|{ nixRx i
n

=≤≤−∈=Ω ,  

2||||minarg)( γ
γ

−=
Ω∈

Ω zzP , and 









−<
≤≤−

>
=Ω

11
11

11
)(

i

ii

i

i

z
zz

z
zP . 

Similarly, for problem (4), when nR=Ω , it yields that  

)()( xPxPx nR== Ω . 

From (9) and (10), the following differential inclusion neural 
network can be established to solve problem (4) 

                                   )(xf
dt
dx

−∂∈ε ,                         (14) 

where  

1||||)( xbAAxAxf TT ∂+−=∂ . 

Set *x is an equilibrium point of system (14), 1
* |||| x∂∈γ , 

From (11) and (14), it obtains 

)( *** xP += Ω γγ , 

0||||)( 1
*** =∂+−=∂ xbAAxAxf TT  

where },,2,1,11|{ nixRx i
n

=≤≤−∈=Ω .  

     Let *** xz += γ , obviously, )( *** zPzx Ω−= , and 

)( ** zPΩ=γ , we have 

0))(( *** =+−− Ω γbAzPzAA TT  

Namely, 

           0)())(( *** =+−− ΩΩ zPbAzPzAA TT              (15) 

Thus, differential inclusion neural network (14) can be 
equivalently rewritten into the following projection neural 
network 

          
)(

)()(

zPzx

bAzPIAAAzA
dt
dz TTT

Ω

Ω

−=

+−+−=             (16) 

D. Existence and Stability Analysis 
From problem (2) and (4), one can see that although function 

1|||| X and 1
2
2 ||||||-||

2
1 XAXb τ+ are both nonsmooth 

function, they are convex on nR . Thus they both satisfy the 
conditions in fact 1 and fact 2. Hence the following existence 
results and stability results hold naturally. 

For system (12), (13), (14) and (16), the existence results can 
be described as follows.   

Theorem1. Let nRx ∈* is an optimal solution of problem (2), 
if and only if there exists an equilibrium point nRx ∈* for 
differential inclusion neural network (12), or there exists an 
equilibrium point nRx ∈* for projection neural network (13) 
such that )( *** zPzx Ω−= . 

Theorem2.  Let  nRx ∈* is an optimal solution of problem (4), 
if and only if there exists an equilibrium point nRx ∈* for 
differential inclusion neural network (14), or there exists an 
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equilibrium point nRx ∈* for projection neural network (16) 
such that )( *** zPzx Ω−= . 

For system (12) and (13), the stability results can be 
described as follows.   

Theorem3. For any initial value 0x , the state vector of 
differential inclusion neural network (12) is globally 
convergent to the optimal solution set Μ of problem (2) 

0)),((lim =Μ
∞→

txdist
t

, 

or for any initial value 0z the state vector of projection neural 

network (13) is globally convergent to the equilibrium *z such 
that  

Μ∈−= Ω )( *** zPzx . 

From the expressions of (14) and (16), notice 
that 0≥AAT , similar to the proof in [10] and [11], it follows 
that state vector )(tx  of (14) , and the state vector )(tz of (16) 
are bounded. From fact 2, the stability results for system (14) 
and (16) can be described as follows 

Theorem4. For any initial value 0x , the state vector of 
differential inclusion neural network (14) is globally 
convergent to the optimal solution set Μ of problem (4) 

0)),((lim =Μ
∞→

txdist
t

, 

or for any initial value 0z , the state vector of projection neural 

network (16) is globally convergent to the equilibrium *z such 
that  

Μ∈−= Ω )( *** zPzx . 

III. CONCLUSIONS 
Applying nonsmooth and non-convex optimization method, 

this paper further researches the compressed sensing problem; 
Combined with optimization technique, nonsmooth analysis 
theory, differential inclusion theory, and set-valued neural 

network analysis method, some differential inclusion neural 
networks and projection neural networks for compressed 
sensing problem with or without dense noise are established. 
By using existence and stable theory of differential equation, 
some existence and stability results for our established neural 
network models are also given. 
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