
Tile Laying Problem Solving Based on Java
Object-Oriented

Lin Chengshi
Information Technology Department

Hainan Vocational College of Political Science and Law
Haikou Hainan, the People's Republic of China

28775834@qq.com

Huang Binwen
Information Technology Center

Hainan Vocational College of Political Science and Law
Haikou Hainan, the People's Republic of China

64471362@qq.com

Abstract—Unlike the general tile laying problem, the tiles, in
this case, have a variety of different shapes and can be rotated
when placed, thus increasing the difficulty of solving the problem.
Through the object-oriented analysis method, the article analyses
the characteristics of the tiles and flooring, constructs the
problem model, and uses the retrospective thought to realize all
the solution space in the tile lying, and finally, solve the problem.

Keywords—tile problem; object-oriented; algorithm

I. INTRODUCTION
In the 6th National Software Competition (Blue Bridge Cup)

final there was a test with the laying of tiles. The question is to
have a size of n * m room floor, the use of the following two
shapes of tile laying [1], as shown in Fig.1, placed when the tile
can be rotated. Hence how many layouts are available if to
fully cover the whole room floor? For example, when the floor
size is 4 * 4, there are two kinds of placement plan, as shown in
Fig.2.

Fig. 1. Two shapes of tiles

Fig. 2. Floor of the 4 * 4 when the two kinds of laying program

II. THE PROBLEM ANALYSIS

A. Analysis of the Characteristics of Tiles and Floors in the
Problem
By observing the tiles can be roughly seen as a rectangle

consisting of multiple squares. The box has a solid and hollow
two, thus it forms a different shape of the tile. Tiles have four
directions, according to a certain order of rotation; it can
produce different graphics [2]. As shown in Figure 3.

Fig. 3. Tile in four different directions

The floor is a regular n * m rectangular box. For the floor, a
basic position (referred to as a base point) is required to lay the
tiles in order to determine where the tile is placed. The tiles
also need to have a basic point, which is used when the laying
of the floor with the base point alignment to determine the
other points on the tile placed relative position. The base point
of the floor is the point where the unused tiles are to be placed,
and it is changed, and each time a tile is laid, it will redefine
the next base point, as shown in Figure 4. The basic point of
the tile is generally the first solid point (from top to bottom,
from left to right) in the series of tiles. As shown in Figure 5.

Fig. 4. Base of the floor

Fig. 5. The basic point of the tile

B. The General Process of Tile Laying to the Floor
The process of laying the tiles on the floor can be seen as a

process of grouping, these box points represent the tiles into
groups of n * m squares. At the beginning of the floor to the
upper left corner of the first point as the starting point, it takes
the first direction of the first tile to lay. The basic point of the

2nd International Conference on Automatic Control and Information Engineering (ICACIE 2017)

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Engineering Research, volume 119

99

tile is placed on the floor with the base point on the floor. The
other points on the tile are referenced to the basic point and
placed in the relative coordinate position, which cannot exceed
the effective range of the floor and cannot coincide with the
point where the floor has been placed. If the success of the
placement of the corresponding floor on the floor of the state to
be marked as occupied, and then it need to check whether the
floor has been covered, if covered with the number of layout
plus one, if not, then moving the base point to the next new
location to repeat the above Laying process. If there is no
success, it needs to continue to try the direction of the tile and
use another tile.

In order to get all the possible laying options, it is necessary
to use the backtracking algorithm to traverse all possible
solutions of the laying of tiles. Such as a base point on the floor
when there is no laying down the tile, it will return to the
previous point using the location of the current tile type
corresponding to the next tile shape to re-lay; if all tile types

are traversed, but also to return to the previous point to
continue this process until the beginning of the base point of all
the types of tiles are traversed after the end of the entire laying
process. After each floor is covered, it is necessary to take a
backtracking algorithm: if the current tile is not the last type of
tile, then continue at the current base point of the auxiliary, or
still need to return to a base point using the location of the
current tile type corresponding to the next A tile shape is re-
laid.

C. Object-oriented Analysis of the Problem
The object in this question is relatively simple; there are

two different tiles and a floor. Because there are many types of
tiles, it is possible to design an abstract parent class to define
the characteristics and behavior of the tiles, which is derived
from the parent class. Flooring because there is no sub-
category, so here is only a design of a floor class can be [3].

III. THE SPECIFIC REALIZATION

Fig. 6. Class and its relationship diagram

A. Tile Parent Class and Its Subclass Design
According to the previous object-oriented analysis, we

firstly design a "tile" abstract class Tile, which has a direction
attribute tileDirection and three important methods: rotate,
isRotatable, and the getPoints. Where the rotate method is used
to change the direction of the tile; the isRotatable method
determines whether the tile is rotated; the getPoints method is
an abstract method, implemented by different subclasses, and
its function is to obtain the coordinates of the points according
to the different directions of the tiles.

This abstract class, Tile, derives two different "tile"
subclasses, L_Tile and F_Tile, representing two types of tiles
in the subject. There is a tile Point Matrix property in the tile
class that holds the coordinates of the tiles in different
directions. In the coordinates of the different shapes of the tile,
you only need to consider the tile position in the solid box can
be, where the coordinates are used to represent the box in the
tile position. The following is the first "L" shape of the tile, for
example, the four coordinates of the coordinates and the
corresponding set of the lattice as shown below:

Fig. 7. Correspondence of the coordinates of each point of the tile

The first group of tiles of the coordinates of the series: (0,0),
(1,0), (1,1);

The second group of tiles of the coordinates of the series: (0,1),
(1,0), (1,1);

The third group of tiles of the coordinates of the series: (0,0),
(0,1), (1,1);

The fourth group of tiles of the coordinates of the series: (0,0),
(0,1), (1,0).

Specify the top of each tile from the first few points as the
basic point of the tile structure. The tile class implements the
abstract method getPoints in the parent class Tile, which
returns the coordinates of the series according to the direction
of the current tile.

The following is the L-shaped tile class code:

public class L_Tile extends Tile {

Advances in Engineering Research, volume 119

100

private List<Point> tilePointMatrix;// Tile shape dot
matrix (dot set)
 // Construction method
 public L_Tile() {
 super();
 tilePointMatrix = new ArrayList<Point>();
 }
 @Override
 public List<Point> getPoints() {
 tilePointMatrix.clear();
 switch (getDirection()) {
 case East:
 tilePointMatrix.add(new Point(0, 0));
 tilePointMatrix.add(new Point(1, 0));
 tilePointMatrix.add(new Point(1, 1));
 break;
 case South:
 ……//refer to above case
 break;
 case West:
 ……//refer to above case
 break;
 case North:
 ……//refer to above case
 }
 return tilePointMatrix;
 }

}

B. The Design of Flooring
According to the previous analysis, the flooring class has

two important attributes: ground and base point. Ground is a
logical array that holds (N * M) square information. Square,
each cell has two states that false or true, in the laying of tiles
when the tiles covered with a true place, there is no bedding
with false said, before the start of the floor mattress all false.
The floor class has three important ways: the addTile method is
used to load the tiles into the floor; the removeTile method
removes the tiles from the floor; the isFull method determines
whether the floor has been covered by the tiles. In addition, in
order to program the floor class, there are other attributes and
methods, limited space here is not one by one introduced [4].
The following is part of the implementation of the code:

private boolean[][] ground;// The ground, save the state when
laying
private Point basicPoint; // Laying the base point refers to the
floor from top to bottom from left to right direction of the first
point which is not used.
Private Stack<Point> oldBasicPointSet;// Record the location
of the base when the laying of tiles in front
private long freePointCount;// Save the number of empty
points that are not currently used

……// omit
 // Construction method
public Floor(int length, int width) {

ground = new boolean[length][width]; // Initialize the size
of the floor

basicPoint = new Point(0, 0); // Start at the base of the upper
left corner of the floor

oldBasicPointSet = new Stack<Point>(); // Create a new
stack for saving each base point when laying
 ……// omit
 }

……//
public boolean addTile(Tile tile) {

List<Point> pointSet=tile.getPoints();
 // If it is empty or already covered with tiles, it
returns false
 if (pointSet.isEmpty() || isFull()) {
 return false;
 }

// The first point in the collection point collection is used as
a reference point
 Point firstPoint = pointSet.get(0);
 int i, j;
// Check that each position on the tile relative to the first
reference point is normally filled in the floor
 for (Point p : pointSet) {
 i = basicPoint.x + (p.x - firstPoint.x);
 j = basicPoint.y + (p.y - firstPoint.y);
// If the coordinates of the cross-border return false
 if (i < 0 || i >= this.length || j < 0 || j >= this.width) {
 return false;
 }
// Returns false if the current location is already in use
 if (ground[i][j]) {
 return false;
 }
 }
// Above all the questions will fill all the points in the floor
 for (Point p : pointSet) {
 i = basicPoint.x + (p.x - firstPoint.x);
 j = basicPoint.y + (p.y - firstPoint.y);
// In the corresponding position on the floor marked as the use
of state
 ground[i][j] = true;
//Number of remaining empty points
 freePointCount--;
 }
// Record the current base point to the base point stack
 oldBasicPointSet.push(basicPoint);
// Move to a new base point
 ……// omit
 return true;
 }
 public boolean removeTile(Tile tile) {
 List<Point> pointSet=tile.getPoints();
 // If it is empty, it returns false
 if (pointSet.isEmpty() ||
oldBasicPointSet.isEmpty()) {
 return false;
 }

Advances in Engineering Research, volume 119

101

// Remove the previous base point from the base stack as the
current base point
 basicPoint = oldBasicPointSet.pop();
// The first point in the collection is taken as the reference
point
 Point firstPoint = pointSet.get(0);
 int i, j;
// Check whether each position on the tile relative to the first
reference point can be removed from the floor
 for (Point p : pointSet) {
 i = basicPoint.x + (p.x - firstPoint.x);
 j = basicPoint.y + (p.y - firstPoint.y);
 // If the coordinates of the cross-border return false
 if (i < 0 || i >= this.length || j < 0 || j >= this.width) {
 return false;
 }
 }
// Above the problem will remove these points from the floor
 for (Point p : pointSet) {
 i = basicPoint.x + (p.x - firstPoint.x);
 j = basicPoint.y + (p.y - firstPoint.y);
// Mark the unused state at the corresponding position on the
floor
 ground[i][j] = false;
// The number of remaining empty points is increased by one
 freePointCount++;
 }
 return true;
 }
// Method: Determine if the floor has been laid
 public boolean isFull() {
 if (freePointCount == 0) {
 return true;
 } else {
 return false;
 }
 }
}

C. Operational Class Design
The main process of laying tile is the key algorithm to solve

this problem. The algorithm flow chart is shown in Figure 8:
Start

t take the f irst tile

Whether t is the second tile
in the last direction? And

there are no tiles in the

floor?

Did t is successfully
put in the floor?

t is tile class object
f loor is f loor class object

count is counter

Put t into stack st

Is f loor full?

count+1 t get new "the f irst
tile"

output result count

end

yes

no

yes

yes

no

no Can t be rotated

Ratate t to next
direction

yes

no Is t the f irst tile?

t get new "the
second tile"

yes

Pop up the tile placed in
front of the stack st to t,

remove t from floor, decide
w hether rotate or get new
“the second tile”based

on the state of t

Pop up the tile placed in
front of the stack st to t,

remove t from floor, decide
w hether rotate or get new
“the second tile”based

on the state of t

no

Fig. 8. Flow chart of the operational class algorithm

When the tile is covered with the floor or all the tiles are
used in all directions, the backtracking is used to take the tiled
tile in front of it, depending on its status. Rotate the new
direction or switch to the second tile to continue Tile laying.
The flow chart of its backtracking procedure is shown in Fig. 9.

Is stack st empty?

Pop up tile of stack
st to t

Remove t from
floor

Can t be rotated? Is t "the f irst tile"?

no

nono

Rotate t to next
direction

t get "the second
tile"

yes yes

Start

End

yes

Fig. 9. The flow chart of its backtracking procedure

The main code is as follows:

public class Test {
public static void main(String[] args) {

// Stack - used to record used tiles
 Stack<Tile> st_Tile = new Stack<Tile>();
// Count the number of times the floor was successfully laid
 int count = 0;
// Receive the size of the keyboard input floor
 int length, width;
 Scanner in = new Scanner(System.in);
 length = in.nextInt();
 width = in.nextInt();
 in.close();
// Create a floor object
 Floor floor = new Floor(length, width);
// At the beginning of the first tile
 Tile t = new L_Tile(); // Take out a tile
// Remove all kinds of tiles and lay them into the floor
 while (!(st_Tile.isEmpty() &&
t.getClass().getName().equals("F_Tile") && !(t.isRotatable())))
{
 if (floor.addTile(t)) { // If the current type of tile can
be properly laid to the floor
 st_Tile.push(t); // Add such tiles

Advances in Engineering Research, volume 119

102

 if (floor.isFull()) { // If the whole floor is
already covered
 count++;// The number of success plus 1
// Check out the previously laid tiles
 while (!st_Tile.isEmpty()) {
 t = st_Tile.pop(); // Pops up the last floor of
the tile

 floor.removeTile(t); // Remove this tile from the floor
 if
(t.isRotatable()) {// Can you rotate?

 t.rotate();

 break;
 } else if
(t.getClass().getName().equals("L_Tile")) {

 t = new F_Tile();//If it is the first kind of change for
the second tile

 break;
 }
 }
 } else { // If not covered
 t = new L_Tile();
// Then the next new location is still the first tile to lay
 }
 } else {// If not properly laid
 if (t.isRotatable())
{//Rotate the tiles ready for the next attempt
 t.rotate();
 } else if
(t.getClass().getName().equals("L_Tile")) {
 t = new
F_Tile();// 用另一种瓷砖尝试 Try with another tile
 } else {// Go back out of
the front tiles
 while
(!st_Tile.isEmpty()) {
 t =
st_Tile.pop(); // Pops up the current tiles

 floor.removeTile(t); // Remove this tile from the floor
 if
(t.isRotatable()) {

 t.rotate();

 break;
 } else if
(t.getClass().getName().equals("L_Tile")) {

 t = new F_Tile();

 break;
 }
 }
 }
 }
 }
 System.out.println("successful completion "
+ count + " laying！");
 System.out.println ("successful completion" + count +
"laying!");
 }

IV. SUMMARY
In this question, the backtracking depth algorithm is used.

When the scale is large, the program takes a long time. For this
problem can be added in the backtracking constraints to
remove unnecessary branches of the algorithm to optimize.
One possible approach is to take into account the structure of
the two types of tiles, one consisting of three squares and the
other consisting of four squares, so the total number of squares
and the number of squares on the floor must be equal to 3x +
4y, where x and y are greater than or equal to 0 integer, so in
the backtracking can first check this constraint, the branch does
not meet the pruning to achieve the optimization of the
algorithm. Of course, there are many ways to optimize the
algorithm; interested readers can explore. Tile laying problems
can be widely used to solve practical problems such as
decorative puzzles, structural joints and other related issues.

REFERENCES
[1] Wang Xiaodong, “Design and analysis of computer algorithms (Third

Edition),” Electronics Industry Press, 2007.
[2] Steven S.Skiena, “The Algorithm Design Manual(Second Edition), ”

Springer, 2008.
[3] プログラミングコンテストチャレンジブック , “Challenge

Programming Contest(Second Edition),” Posts and Telecommunications
Press, 2013.

[4] Robert Sedgewick, Kevin Wayne, “Algorithms(Fourth Edition),” Posts
and Telecommunications Press, 2012.

Advances in Engineering Research, volume 119

103

	I. Introduction
	II. The problem analysis
	A. Analysis of the Characteristics of Tiles and Floors in the Problem
	B. The General Process of Tile Laying to the Floor
	C. Object-oriented Analysis of the Problem

	III. the specific realization
	A. Tile Parent Class and Its Subclass Design
	B. The Design of Flooring
	C. Operational Class Design

	IV. Summary
	References

