
Design and Implementation Method of a High
Performance Web Image Browsing Server

Genyuan Zhang
School of Electronic Information

Zhejiang University of Media and Communications
Hangzhou, China

Yongjie Pan
Zhejiang Radio and Television Group

Hangzhou, China

Yuebo Ying
Zhejiang Radio and Television Group

Hangzhou, China

Abstract—It is an important how to provide effective cost,
high performance image block query and image block analysis
for the design of WEB image server. To solve the above problems,
this paper proposes a novel method to design and implement
WEB image server. Like most modern WEB image server, the
server stores the pre rendered image blocks with different zoom
scale on a web server, and then the image blocks is loaded in the
client browser. At the same time, this paper describes in details
the key issues of web server design and the methods of image
block query, image block prediction and image block analysis.
The prototype of the above method is implemented, and the
results of the benchmark results also show the effectiveness of the
method.

Keywords—WEB image server, rasterization, image block
analysis, image block prediction

I. INTRODUCTION
In recent years, WEB image sever has been used widely.

The network has become a major platform for accessing,
processing image block. Classifying information according to
some query criteria (including image block prediction) is the
essence for the image server. Services derived from modern
WEB image server products are cpu-intensive and require
memory types[1,2,3,4]. For WEB image server design, how to
provide effective cost, high performance image block query
and image block analysis implementation is an important
problem[5,6,7]. In this paper, we propose a novel grating
method to design and implement the WEB image server. At the
same time, this paper describes in details the key issues of web
server design and the methods of image block query, image
block prediction and image block analysis. The prototype of
the above method is implemented, and the results of the
benchmark results also show the effectiveness of the method.

II. SYSTEM STRUCTURE AND FRAMEWORK

The diagram below (Fig.1) shows the design of the
framework and the network image server. On the client side,
the Flex client enters a Rich Internet Application (RIA)
scenario by creating a programmatic approach to make flash
applications to use its ubiquitous cross-platform flash player.
This programmatic approach uses the core language of Flex:
XML's template language (MXML) and its scripting language.

Flex integrates J2EE by using an additional server-side layer
called real-time loop data service, called the BlazeDS, which is
deployed on the application server. This extra layer on the
server can help Flex applications call Java classes directly and
communicate with Java classes, so that they can be invoked
and accessed by Flex applications. The requests being
preprocessed and passed by the small service program are
processed by the corresponding Java modules (image block
identifiers, image block queries, and so on) that are backed up
by c + + implementation components. The choice of c + +
language as the implementation language is due to its platform
independence and high performance.

Fig. 1. System framework and component

2nd International Conference on Automatic Control and Information Engineering (ICACIE 2017)

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Engineering Research, volume 119

120

Similar to now most of the image server is implemented,
we put forward the system in the network is also stored on the
server different scaling the size of the pretreatment of image
block (and corresponding index files, the function of index files
in the back), then the image block will be added to the client
browser together. The image can be composed of a single layer
or some combination layer used to form a base image or
background image. The image cache is used to obtain complex
image symbols and better drawing quality. Prerendering is also
very useful for improving performance on the server by
sacrificing some disk image blocks. An interesting and
meaningful finding is that the cached image blocks can be not
only the image of vector data, but also the rasterization of
specific geometric shapes.

It is not difficult to understand that Rasterization
approximation is more similar to the image block boundary and
shape feature than the MBR. At the same time, Rasterization
approximation can better judge the relationship of image block.
For example, if a grid that is represented by a matrix with
feature 1 and the same grid that is represented by a matrix with
feature 2overlap, so the Rasterization approximation can easily
determine the overlap of these two grids. The overlapping grid
is the grating approximation of feature intersection. In order to
vectorize the Rasterization approach; this method can obtain
the operation such as intersection and erasure. These operations
become the basis of image block analysis in the network. The
details of this algorithm are explained in section 4.

III. INDEXING TECHNIQUES
To get a block image, we used an Anti-Grain Geometry

(AGG). AGG is an open source graphics library writed by
industrial standard C+ +. Basically, AGG can be seen as a
platform independent, high-performance, lightweight rendering
engine. This rendering engine can generate pixel images in
memory based on vector data. This rendering engine can render
an anti-aliasing arbitrary polygon or line, and can guarantee the
accuracy of the sub-pixel.

The rasterization method of traditional computer graphics is
limited to geometrical coordinates and the characteristic
information cannot be stored in the render image. If we save
the feature ID in the index file for the feature ID of each pixel
of the rendering image, we will be able to estimate the mapping
between image pixels and feature attributes.

We can implement this idea by using the feature ID as the
idea to fill the color drawing polygon. The main idea is that for
each geographic feature, the ID value should be converted from
decimal to the binary which the lowest 8 digits stored in the
blue component。If the binary value is more than 8 digits; its
middle 8 digits should be stored in the green component. The
other digits can be stored in other components in the same way.
Let's take the feature id 24202 for an example to explain the
process of parsing. Convert the feature ID from the decimal to
the binary number (101111010001010), which has the lowest 8
digits, 8 digits, and the highest 8 digits, which should be stored
in blue, green, and red components. When the whole parsing
process is completed, the color of the feature ID is red: 0, green:
94, blue: 138.

In order to generate shadow images, the AGG rendering
engine needs to be modified. For each render buffer unit, the
feature ID is saved next to the coverage value, which records
the area of the unit covered by the polygon (per percent). When
the image block filter is obtained in the network image service
protocol and the image block filter in the network feature
protocol, the shadow image bears the role of the index file. If a
user wants to know the feature attributes of the image that
he/she is clicking on in the browser, the server will index the
pixel location where the tap is located. This query can be
completed in a shadow image on a constant time.

We did not retrieve the R tree example (down from the root
node), the retrieval process in the new method is based on the
grid system. It is also important to note that the generated index
file allows the retrieval algorithm to eliminate the uncorrelated
areas of the index image block, and only check the grid cells of
the retrieved area that the user has made.

Our idea is to first assign width_tile * height_tile * 3 bytes
of memory to the current index image (in this case, width_tile
and height_tile are the width and height of the index image).
For the point query, the coordinates of the query point need to
be converted to the rows and columns in the index image
(through the scan line to specify the grid cell in the memory).
Then the color of the image ID point is resolved. For the region
query, the specified line in the memory image should be
scanned after the region row and column are determined based
on the user query requirements. At the same time, several
different RGB values can be calculated. So some ids that are
needed can be easily converted from these color values.

IV. PREDICTION AND IMAGE COLORING ANALYSIS

Image block filters provide a traditional way to retrieve
features from the server side by specifying some image block
predicates(separation/intersecting, equal, external/external,
high light, cross, internal/inclusive, overlap, surround box,
etc.).Extended relational database management system (such as
oracle image block) or geometric libraries (such as
administrators and Terralib) often use CPU intensive and
computational geometry that need a lot of memory to complete
the image block to predict and image color. Extended relational
database management system (such as oracle image block) or
geometric libraries (such as administrators and Terralib) often
use CPU intensive and computational geometry that need a lot
of memory to complete the image block to predict and image
color. We continue to use visible rasterization in image block
prediction and image shading. In fact, in a modern WEB image
server, the image blocks are pre-rendered or dynamically
rendered when the initial client request is requested. In such a
scenario, the cached image block is not only the visualization
of vector data, but also the grating approximation of the
specific geometry. Such images can have more accurate
approximation precision than the minimum surrounding
rectangle (MBR), and can also serve as the basis for image
block prediction and image shading implementation.

It is not difficult to understand the two steps of image block
prediction and image coloring of the raster approach. (1) Using
the method mentioned in the previous section to make the
grating of vector data. (2) Based on the color operation of
grating and image block relation judgment.

Advances in Engineering Research, volume 119

121

Empty (no cross grid cell and polygon), weak (grid and
polygon intersection less than or equal to 50%), strong (grid
and polygon intersection is more than 50%, less than 100%),
with 100% (grid and polygon intersection). Only strong ×
strong is certain conditions, so weak×weak, strong×weak and
weak × weak are all uncertain and still require further
calculation. When calculating approximate area and confidence
interval, it uses mathematical expectation and probability
formula to estimate which may not be the proper real number.
Mentioned in the last section of the rendering engine accurately
to the border of the sub pixel accuracy to record grid cell
coverage area, so it can pass judgment corresponding grid cell
coverage area to determine whether two polygons overlap.
Known, for example, in the first layer of a cell coverage is 49%,
in the same grid position of the second layer of coverage is
52%, it can determine the two layers overlap on the grid unit,
because the sum of coverage of more than 100%. But if you
use 4CRS, you're not sure because it can't handle weak ×weak
conditions(not talk about weak × weak conditions). In terms
of side effects, the rendering engine can store feature attribute
information in a cell structure that provides more useful leads
for image overlap (multi-deformation ids, etc.)We know that
there are two input feature sets A and B to determine whether
these two layers overlap. Returns the corresponding polygon
ID if it is true (the overlap may be treated as a filter condition).
For image overlay analysis, the majority of the requirements
mentioned above (the feature number of the result layer, the ID
and area of each feature of the resulting layer) can be satisfied.
But if the user wants to get the geometry of each feature, we
need tovectorize the rasterization of the result layer.

V. SERVER-SIDE CACHING SYSTEM
The server-side caching system has a different way of

organizing the cached image data. This way of organization
first is described in this section, and then we'll introduce a
memory-resident data structure and an index structure, through
these structures can accelerate the cache file image retrieval
process.

In this new cache system, each zoom level image block
represents four image blocks at the next zoom level. To reduce
the number of file data in the cache. Instead of storing each
image file in a separate file, we store all the image blocks of the
same layer in the same file. Therefore, for there are 16 levels
and 16 zoom level image service, only have 16 files in the
cache, instead of 236 files, if every image file stored separately
in each file, according to the formula (1), when p is 1.Each
image file in the cache is given an identifier to indicate it is in
this layer. The length of this identification number can be
obtained by formula (3).

LTid=lg (i=p
p+n−1 4i�) (1)

In formula (1),LTid represents the shortest bit length of the
identification number. N represents the number of zoom levels,
p represents the first scaling level. The identification number is
generated based on the zoom level and the image block
sequence number at the corresponding zoom level. Fig. 2
describes how to determine the identification number of each
image block in the cache.

Fig. 2 (a) describes an image server that provides two zoom
levels, with 4 image blocks in the zoom level 1, and 16 image
blocks in zoom level 2. At the lower zoom level of the image
block (zoom level 1) the higher image block (zoom level 2) has
a smaller identification number. In the same zoom level image
block, the identification number of each image block is given
in the z-axis order.

Fig. 2. Identifying number for image tiles

In the entire image at a scaling level, given the number of
rows and columns of animage block, then the identification
number of this image block can be obtained by formula (2).

TID(ZL,RN,CN) = i=p−1
p+ ZL −2 4i� + Bit_Shuffling(RN,CN)-1 (2)

In formula (2), ZL,RN,CN respectively represent the scale
level, number of rows and columns. The TID is a function of
the image block identification number that calculates a given
zoom level, row number, column number, and Bit__shuffling
is a function that gets the z-axis sequence code based on the
number of rows and columns. As depicted in Fig.2 (b), the
Bit__shuffling function intersected the number of rows and the
number of columns in order to get the binary encoding of the z-
axis sequence of the image block.

To improve the performance of the network image service,
especially when the customer wants to switch from one zoom
level to another lower zoom level. We store a pointer to each
image block that does not belong to the lowest scaling level
and to the next lower zoom level containing four corresponding
block of images. The domain name of TN is the number of
blocks of images stored in the block of files. A domain named
ID is the[LTid]bit length representation of the block of images
stored in the file block. A man named Pos domain ID is 2 bytes
said referring to the Pos before the image of the location of the
block of data, one is called the PN domain is said to contain the
next level 1 byte length corresponding to the image block file
pointer number, the location of the image block by Pos domain
in PN domain before said. The data portion of the image block
is divided into two parts. The front is the pointer to the next
level image block, and the image block itself.

VI. BENCHMARK AND EXPERIMENTAL RESULTS
The operating environment is the IBM notebook T43 model,

the pentium M760 (2.0 GHZ) processor, and 2GB of ram
(DDR2). The speed of the hard disk is 5400RPM. The
operating system is Windows xp (service pack 3).

In this experiment, the first data set D is a random polygon.
As a million operations (overlap and inclusion), the comparison
of the average time between a transaction of the method and
the corresponding module in the geometry engine operating
system. The experiment and data analysis show that the

Advances in Engineering Research, volume 119

122

efficiency of the image block prediction operation is not
improved greatly for the sparse dataset, but for the dense graph,
the time cost can be reduced by 60%.

The result of the point query performance indicates that,
regardless of which data set is selected, the method proposed
by us shows better performance than the R tree method. When
retrieving an object that is contained to a given point, our
algorithm finds the rows and columns on the index image
based on its geographic coordinates, and can parse the color of
the grid of the real ID. Constant in the computational
complexity. By contrast, the R tree method starts to query the
data from the root, which reduces the performance of the query
because there are many redundant query paths.

VII. SUMMARY AND PROSPECT
This paper presents a rasterization approach based on high

performance WEB image server design and implementation.
The key problems of web server design and image block query,
image block prediction, solution method of image block
analysis and server side caching mechanism are described in
detail. We have also proposed a prototype framework for using
the above methods, and the relevant baseline result details also
demonstrate the effectiveness of our approach. This paper is

supported by the project ‘Research and development of real-
time rendering algorithms for large 3d data for mobile terminal
(project No: 2017C31088)’from Zhejiang science and
technology department.

REFERENCES
[1] P. A. Longley, M. F. Goodchild, D. J. Maguire and D. W.

Rhind,Geographical Information Systems: Principles,
Techniques,Management, and Applications, 2nd ed., New York: Wiley,
2005,pp.97-99.

[2] T. Ahmed, J. Hirschi and F. Abid. Flex3 in Action. Manning.2009.
[3] http://www.antigrain.com/doc/index.html.
[4] J. D. Foley, A. V. Dam, S. K. Feiner and J. F. Hughes,

ComputerGraphics: Principles and Practice in C, 2nd ed., Addison-
WesleyProfessional, 1996, pp.67-72.

[5] L. G. Azevedo, G. Zimbrão and J. M. Souza, “Approximate
QueryProcessing in Spatial Databases Using Raster Signatures,”
VIIIBrazilian Symposium on GeoInformatics, Campos do Jordão,
Brazil,November 19-22, 2006, INPE, p.3-17.

[6] Hui Dong, Zhenlin Cheng and Jinyun Fang, “One rasterization
approachalgorithm for high performance map overlay,” The 17
InternationalConference on Geoinformatics 2009, 12-14 Aug. 2009.

[7] http://wiki.woodpecker.org.cn/moin/lilin/geos-introduce.

Advances in Engineering Research, volume 119

123

	 INTRODUCTION
	SYSTEM STRUCTURE AND FRAMEWORK
	INDEXING TECHNIQUES
	PREDICTION AND IMAGE COLORING ANALYSIS
	SERVER-SIDE CACHING SYSTEM
	BENCHMARK AND EXPERIMENTAL RESULTS
	SUMMARY AND PROSPECT
	REFERENCES

