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Abstract—Based on Canny, a typical edge detection method, a 
generalized Canny-Oscillation algorithm of edge detection 
method is proposed. However, the traditional Canny algorithm 
bears a defect in the edge-detection of details and it is futile when 
noise signals are involved. To solve these problems, the group 
merged the oscillation theory into non-maximum suppression 
process in an attempt to equip the display-pixel matrices with 
enhanced accuracy. As can be seen in the test results, our method 
proves to be satisfactory and delivers better performance than 
traditional approaches. This strategy is still efficacious when 
applied to other edge-detection algorithms such as Sobel.  

Keywords—Canny Algorithm, Edge Detection, Image 
Processing, Oscillation Theory  

I.  INTRODUCTION  
As an important part in digital image processing, edge 

detection often requires careful handling. Traditional edge-
detection operators, for instance, Roberts, Sobel, Prewitt, 
Lapacian, have enjoyed a huge group of users from the 
industrial sector. These operators are theoretically workable but 
often not entirely satisfactory in practical use due to their 
sensitiveness to noise. And the condition of an image is usually 
affected by various factors during the shooting process. Hence 
Canny algorithm by itself can hardly settle the threshold that 
reflects all the grey level information. In this paper, we put 
forward a new method in which an innovative four-direction 
Canny algorithm is used for prior operation and an 
approximation algorithm derived from oscillation theory is then 
employed. Our experimental results show accuracy better than 
that of traditional non-maximum suppression.  

II. TRADITIONAL CANNY ALGORITHM  

A. Image Smoothing 
The first derivative of the two-dimensional Gauss function 

is used in Canny algorithm to smooth the image. We set the 
two- dimensional Gauss function as:  

G(ℎ, 𝑣) =
1

2𝜋𝜎2
exp �−

ℎ2 + 𝑣2

2𝜎2
�   (1) 

Where h is the horizontal vector and v represents the vertical 
component. Now we calculate the gradient vector and 
decompose it into two one-dimensional columns, which will be 
used as convolutional filters:  
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Where c is a constant and σ is the control parameter of the 
filters.  
B. Typical Gradients and Direction 

The Canny operator is concise and efficient. Let I x, y be 
an array of smoothed image data. After obtaining the grey-level 
image, we define the matrix operator as [6]:  

�
𝑆ℎ = �−1 1

−1 1�

𝑆𝑣 = � 1 1
−1 −1�

        (3) 

Substituting (3) to the pixel matrix, we have: 

�
𝑃ℎ[𝑖, 𝑗] =

1
2

(𝐼[𝑖 + 1, 𝑗] − 𝐼[𝑖, 𝑗] + 𝐼[𝑖 + 1, 𝑗 + 1] − 𝐼[𝑖, 𝑗 + 1])

𝑃𝑣[𝑖, 𝑗] =
1
2

(𝐼[𝑖, 𝑗 + 1] − 𝐼[𝑖, 𝑗] + 𝐼[𝑖 + 1, 𝑗 + 1] − 𝐼[𝑖 + 1, 𝑗])
(4) 

Then, the amplitude and direction could be written as: 

M[i, j] = �𝑃ℎ2 + 𝑃𝑣2   (5) 

µ[i, j] = arctan �
𝑃𝑣
𝑃ℎ
�     (6) 

C. Typical Non-maximum Suppression 
1) Area selection: A 3 ∗ 3 patch is utilized in the Canny 

algorithm, with the amplitude matrices of 8 different 
directions used in interpolation. As shown in the graph below 
(figure 1), we first choose a square patch around a certain 
point and mark out the gradient direction line of the point. 
dTmp1 and dTmp2 are the two points where the gradient 
direction line and the boundary of the selected square patch 
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intersect. Their amplitudes can be calculated using the 
amplitude data of points from g1 to g4. For each point of the 
patch, we would later compare the amplitude of central point, 
M[i, j] with that of dTmp1 and dTmp2. The suppression 
operation should be executed on the area formed by the central 
point, the gradient line and the boundary of the 3 ∗ 3 patch. 
We donate this selected area as δ[i, j].  

 
Fig. 1. Typical Non-maximum Suppression 

2) Mathematical operation: If M[i, j] is smaller than the 
two interpolated values (the amplitude of dTmp1 and dTmp2); 
this particular point is considered not to be part of the edge by 
assigning the corresponding edge marker to 0. Eventually, this 
process refines the wide ridge of M into a pixel band without 
changing the gradient amplitude values in M, which can be 
written as[4]:  

N[i, j] = NMS(𝑀[𝑖, 𝑗], 𝛿[𝑖, 𝑗])  (7) 

In which “NMS” is non-maximum suppression.  

D. Dual Thresholds Method 
After calculating the amplitude matrix M, we construct an 

amplitude histogram. Here we choose the upper p quantile 
(usually p=0.3) and half of that value [9] to be respectively the 
upper and lower threshold. For a 3 ∗ 3 patch, if the am plitude 
of the point exceeds the upper threshold and one of the other 
eight points has amplitude less than the lower threshold, a 
specific edge can be delineated, and the process goes on to 
produce a closed curve [8].  

III. ADVANCED CANNY-OSCILLATION ALGORITHM  

A. Modified Gradients and Direction  
Let I[x,y] be an array containing data of a smoothed image. 

After catching a patch of 3 ∗ 3 data m atrix, w e can define four 
gradients (h axis, v axis, 45◦ axis, 135◦ axis) of the central 
point as[5]:  

𝑃ℎ[𝑖, 𝑗] =
1
2

(𝐼[𝑖 + 1, 𝑗] − 𝐼[𝑖 − 1, 𝑗])

𝑃𝑣[𝑖, 𝑗] =
1
2

(𝐼[𝑖, 𝑗 + 1] − 𝐼[𝑖, 𝑗 − 1])
  (8) 

𝑃45°[𝑖, 𝑗] =
1
2

(𝐼[𝑖 − 1, 𝑗 + 1] − 𝐼[𝑖 + 1, 𝑗 − 1])

𝑃135°[𝑖, 𝑗] =
1
2

(𝐼[𝑖 + 1, 𝑗 + 1] − 𝐼[𝑖 − 1, 𝑗 − 1])
  (9) 

The calculation of the gradients’ amplitude and direction is 
really a demanding job. Any operations taken should always 
obey vector arithmetic rules. The sample graph (figure 2) given 
below manifests a possible gradient direction.  

 

Fig. 2. Four-direction Gradient 

Let ℎ�⃑ , 𝑣⃑, 𝚤, 𝚥be the unit vector in each direction, we obtain 
the resultant using [3]:  

𝑀��⃑ [𝑖, 𝑗] = 𝑃ℎℎ⃑ + 𝑃𝑣𝑣⃑ + 𝑃45° 𝑖⃑ + 𝑃135° 𝑗⃑  (10) 
Therefore, we can write the amplitude as:  

𝑀����⃑ [𝑖, 𝑗] =
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√2
2
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√2
2
𝑃45°�

2

+ �𝑃𝑣 +
√2
2
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√2
2
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2  (11) 

Further, the directional angle is given by:  

Ω = arctan�
𝑃𝑣 + √2

2 𝑃135° + √2
2 𝑃45°

𝑃ℎ + √2
2 𝑃135° − √2

2 𝑃45°

�   (12) 

B. Oscillation Theory  
One part of our new theory is that we recognize the 

similarity between the pixel and the vibrating particle. Actually 
all the vibration information can be recorded in a dyadic array 
like (M[i, j], Ω[i, j]). When a known point is recognized as 
source of the vibration, we simply consider its individual 
vibration function to be:  

M(ℎ, 𝑣, 𝑡) = 𝐴(ℎ, 𝑣)𝑐𝑜𝑠(𝑤(ℎ, 𝑣)𝑡 + 𝜑)  (13) 

But to be more rigorous, given the initial condition, each (h,v) 
point of the plane should be obtained solving the vibration 
partial differential equation below of which the pixel 
arrangement obeys:  

𝜕2𝑀
𝜕𝑡2

= −𝑎
𝜕
𝜕𝑥

�
𝜕𝑀
𝜕𝑡
� = −𝑎

𝜕
𝜕𝑥

�−𝑎
𝜕𝑀
𝜕𝑥

� = 𝑎2
𝜕2𝑀
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The solving process has been omitted. The solution of the 
equation with the M(x,0) = φ(x) and Mt (x,0) = Ψ(x) being the 
initial condition is called “D’Alembert solution”:  

u(𝑥, 𝑡) =
1
2

[𝜑(𝑥 + 𝑎𝑡) + 𝜑(𝑥 − 𝑎𝑡)]

+
1

2𝑎
� 𝜓(𝜉)
𝑥+𝑎𝑡

𝑥−𝑎𝑡
𝑑𝜉  (15) 

Moreover, the variable t can be obtained if the palstance is 
posited to be a constant. When the gradient direction angels of 
two pixels i.e. the phase of the vibration is known, the wave 
interval can be calculated using the expression:  

t =
Ω2 − Ω1

𝜔
  (16) 

C. Approximation Algorithm and Error Analysis  
According to vibration theory, if there exist two given 

points with full information (meaning both amplitude and 
phase data are known) and the distance between these two 
points is relatively short, an approximation algorithm could be 
conducted as:  

 
Fig. 3. Approximation Demonstration  

In the figure, A and B are two points with full information 
and the curve is the authentic gradient path, while the straight 
line is the approximate path of the gradient. According to 
oscillation theory, the gradient state of point D can be easily 
simulated by simple linear interpolation of amplitude and phase; 
however, point C can hardly be described because of an 
uncharted route. A quite straightforward thought would be: 
what if we replace the vibration state of point C with the 
vibration state of point D.  

Calculation below confirms the validity of our 
approximation with a satisfying result.  

⎩
⎪
⎨
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∆𝐼 = 𝐼𝐷 − 𝐼𝑐

≈
1
2
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1
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1
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∆𝐼
∆𝑡

≤ 𝑚𝑎𝑥|𝜑̇| + 𝑚𝑎𝑥|𝜓|  (19) 
Obviously, max |φ′| + max |Ψ| must be lower than gradient 

after decomposing the trend. In other words, φ could be the 
substitution of the gradient matrix M, so the error is equivalent 

and commensurate to the gradient of the gradient matrix M. 
Manifestly, this approach is a success with an error close to 0.  
As for the direction angle, we have:  

∆Ω = Ω4 − Ω3 = �
𝑅
𝑟
Ω2 +

𝑟 − 𝑅
𝑟

Ω1�

− �
𝑅
𝐿
Ω2 +

𝐿 − 𝑅
𝐿

Ω1�   (20) 

(20) can also be written as:  

∆Ω = ∆tω
Ω1

Ω2 − Ω1
+ �2 −

(𝑡𝐷 + 𝑡𝐶)𝜔
Ω2 − Ω1

�Ω2  (21) 

Where ω is a finite constant. And obviously, when ∆t → 0 and 
(𝑡𝐷+𝑡𝐶)𝜔
Ω2−Ω1

→ 2, we have∆Ω→0.  

D. Oscillation Theory in Modified Non-maximum Suppression  
One hypothesis of the typical non-maximum suppression is 

that the transformation of the gradient matrix M[i, j] is a linear 
polynomial. In fact, it indeed isn’t. Therefore, the application 
of oscillation theory in non-maximum suppression is able to 
produce more accurate calculation results.  

While prior operation is similar to typical non-maximum 
suppression; a new method is used in the calculation of the 
node value.  

 

Fig. 4. Calculation of the Node  

In our approach, the gradient of point D is influenced by 
that of point g1 to g4. Therefore, when the point C and g1 are 
fixed, a vectorial component Mg1 could be calculated using the 
approximation algorithm derived from D’Alembert solution. 
Let 𝑀1�����⃑  be the gradient of the point g1 and 𝑀0�����⃑  be the gradient 
of the point C, we have:  

�𝑀𝑔1���������⃑ � = �𝑀1�����⃑ �
|CD|
|Cg1| + �𝑀0�����⃑ �

|Cg1| − |CD|
|Cg1|   (22) 

Let Ω1be the gradient angle of point g1 and Ω0 be that of point 
C, we obtain:  

𝜃𝑀𝑔1 = Ω1
|CD|
|Cg1| + Ω0

|Cg1| − |CD|
|Cg1|   (23) 

It works in similar way for the other two couples of points (C 
& g2, C & g3). In this way, the resultant gradient level of D 
can be written as[7]:  
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𝑀𝐷������⃑ =
1
3
𝑀𝑔1���������⃑ +

1
3
𝑀𝑔2���������⃑ +

1
3
𝑀𝑔3���������⃑   (24) 

IV. EXPERIMENTAL SIMULATION AND ANALYSIS  
We have performed experiments with the Canny-

Oscillation algorithms on images shown in figure 5(a) and 
figure 5(b) below. Figure 5(a) is an artificial image and figure 
5(b) is the standard testing image “Lena”. To investigate the 
algorithm’s performance on anti-noise ability, both test images 
have been added noise process following N (0, 102 ). (A 
rounding process is conducted when add the noise signal into 
the original image.)  

 
Fig. 5. (L) Artificial Image    (R) Lena Image  

Note that the artificial image is constituted by: top right 
corner with 160 as gray level, adjacent region with 128 as gray 
level, intermediary area with gray level 66, and the lower left 
quarter with grey level 210.  

A. Edge Detection of Figure 5(a)  
 

 
Fig. 6. (L) Canny Algorithm      (R) Canny-Oscillation Algorithm  

Figure 6(a) is created by traditional Canny algorithm while 
figure 6(b) is delineated by our Canny-Oscillation algorithm. 
Compared with figure 6(a), figure 6(b) is noticeably less 
affected by the noise we have added. [1] 

Apart from that, the detail handling of figure 6(b) is 
conspicuously better than figure 6(a), hence our algorithm 
proves to be an improved one in this respect.  

 

 

B. Edge Detection of Figure 5(b)  

 
Fig. 7. (L) Canny Algorithm     (R) Canny-Oscillation Algorithm 

Likewise, the edge image figure 7(b) contains more details 
such as the upright column and the right decoration. It is 
noteworthy that the edge in figure 7(b) and figure 6(b) is 
slenderer than that in figure 7(a) and figure 6(a). That’s 
because the width of the pixel band declines out of high 
precision [2]. In other words, the detected edge using our 
method has a higher signal-to-noise ratio and exhibits better 
connectivity.  

V. CONCLUSION  
The Canny-Oscillation algorithm is an advanced variant of 

the traditional Canny algorithm. It maintains the advantages of 
the conventional Canny operator and improves the ability to 
suppress noise effect. Moreover, the new algorithm enjoys 
better detail detection ability, and the edge it obtained has a 
higher signal-to-noise ratio and better connectivity. What is not 
mentioned in the text is that the Canny-Oscillation algorithm 
also shows performance better than other simple operators such 
as Laplacian and Sobel. However, the problem of slower 
computing remains to be solved in further research.  
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