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Abstract—In respect to the nonlinear and low signal-to-noise 
ratio characteristics of the vibration signals measured from diesel 
engine, This paper conducts an investigation on diesel engine 
condition monitoring based on ensemble empirical mode 
decomposition(EEMD) and morphological fractal dimension. 
Firstly, the vibration signal is decomposed into a set of intrinsic 
mode functions(IMFs) by EEMD, and get the fault information of 
the characteristic IMF. Then the morphological fractal dimension 
of IMFs which contain diesel engine fault characteristic 
information is computed and as it for the characteristic 
parameters to identifying the diesel engine working states and 
fault types. The analysis of vibration signals measured from diesel 
engine at different states that are normal and exhaust valve 
leakage have been done. Results show that it can reflect nonlinear 
characteristics of vibration signals measured from diesel engine 
and monitor working condition of diesel engine accurately. 
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I. INTRODUCTION 
The performance and reliability of the engine is an important 

guarantee for the safe operation of power system. The engine 
valves have long been recognized as an important influence on 
the performance of diesel engine which can cause the change of 
the surface vibration response of diesel engine [1]. In 
consideration of the valve fault will lead to change of the surface 
vibration response of diesel engine, it is possible to monitor the 
changes in valve fault that take place with running time by 
analyzing the change of the surface vibration response of diesel 
engine. 

Fractals are mathematical sets with a high degree of 
geometrical complexity that can model many natural 
phenomena [2]. This is consistent with the idea that multi-scale 
morphology is used to measure the geometric shape of the 

object being analyzed at different scales[3]. In order to use the 
multi-scale morphological operators to compute the fractal 
dimension, the improvement and optimization of this method 
from the angle of improving the computational efficiency, using 
morphological filtering operators of fractal dimension 
estimation[4-6]. In practice, because the measuring vibration 
signals mostly contain noise, the noise components have a great 
influence on the calculation of fractal dimension, so as to affect 
the accuracy of the vibration signal characteristics. The 
vibration signal must be denoised in order to get the 
morphological fractal dimension. 

Ensemble empirical mode decomposition (EEMD) is able to 
decompose the nonlinear and non-stationary signals into a finite 
number of intrinsic mode components (IMF) according to the 
local time characteristic of the signal[7]. In this paper, the 
multi-scale morphological fractal dimension and EEMD are 
introduced into theanalysis of vibration signals. 

II. FRACTAL DIMENSION ESTIMATION BASED ON 
MORPHOLOGICAL OPERATIONS  

In the formalism of mathematical morphology, this cover 
can be obtained by using one-dimensional  erosions and 
dilations of  ( )f n  by  a  function structuring  element  )(mg , 
the real functions of ( )f n  and )(mg  are defined respectively 
in two discrete domains 1} 21{0 −⋅⋅⋅= NF ，，， and 

1} 21{0 −⋅⋅⋅= MG ，，， . where )(nf  is  a  time signal, 
)(mg is a structuring element, by using one-dimensional 

operations erosions and dilations on )(nf  by  a  function 
structuring  element  )(mg , these operations are defined  as 

        )}m(g)mn(f{min)ngf
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Hence, for one-dimensional discrete time signal ( )f n , 
0,1, ,n N=  , the structuring element is defined at  scales ε  

[4],  
 

       ggg)ng ⊕⋅⋅⋅⊕⊕=ε (    TIMESε .                  (3)      
                                                                                 
Taking max1, 2, ,ε ε=   as the range of analysis scale, 

2/max N≤ε , then the results of erosions and dilations of the 

signal ( )f n at different scales ε  are 
)(ngf εΘ and )(ngf ε⊕  respectively. 

    The cover area of the signal at the scale ε is defined  

             ))ngf)ngf)A
N

1n
g (((( εΘ−ε⊕=ε ∑
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     According to [4], ( )gA ε  satisfies the following conditions, 
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Where max1, 2, ,ε ε=  . 

The  Minkowski-Bouligand dimension MD  of  the signal  is 
defined  as, 
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In practice, the fractal dimension MD  of the signal ( )f n  is 
equal  to  the  slope  of  a  line  segment  fitted  via  least squares 

to the )/)(log( 2εεgA  and )1log(
ε

. 

According to the analysis in [4], we use the flat structural 
element of length 3 as the unit structure element, i.e. 

}0,0,0{)( =mg . By using the flat structure element, the 
estimation result of the fractal dimension is not affected by the 
amplitude range of the signal and reduces the amount of 
calculation. According to the method of determining the 
maximum grid scale of periodic signal, combined with the 
characteristics of the diesel engine vibration signal with a 
working cycle, the maximum scale maxε is 60. 

III.  ENSEMBLE EMPIRICAL MODE DECOMPOSITION 

A. Empirical Mode Decomposition 
     Eempirical mode decomposition (EMD) as an adaptive 

method, is developed from the simple assumption that any 
signal consists of different simple intrinsic modes of oscillations. 
With the EMD technique, any complicated signal can be 
decomposed into a collection of intrinsic mode functions 
(IMFs),, each of which must satisfy the following definition [8]: 
(1) In the entire data set, the number of extrema and the number 

of zero crossings must either be equal or differ at most by one; 
(2) At any point, the mean value of the envelope defined by the 
local maxima and the envelope defined by the local minima is 
zero. With the definition, any signal x(t) can be decomposed as 
follows: 

First, find all the local extremum of the signal and use cubic 
spline to fit it as the local mean m(t) and extract the detail h(t) = 
x(t)－m(t). Regard h(t) as new x(t) and repeat the operation 
above until h(t) satisfies the IMF conditions, then obtain the first 
IMF c1(t) = h(t). Let the residual r1(t) = x(t)－h(t) be a new 
signal, repeat the above processes, obtain the other orders IMFs. 
The decomposition process can be stopped when rn(t) becomes 
a monotonic function from which no more IMF can be extracted. 
We finally obtain 

              )()()( trtctx n

n

i
i += ∑

=1

                             (7)                                                                                                        

Thus, we can achieve a decomposition of the signal into 
IMFs )(1 tc , )(2 tc , . . . , )(tcn , and a residue )(trn , which is 
the mean trend of )(tx . The IMFs include different frequency 
bands ranging from high to low. The frequency components 
contained in each frequency band are different and change with 
the variation of signal )(tx . 

For each IMF )(tci  in Eq. (1), we can always have its 
Hilbert transform as 

              τ
τ−
τ

π
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With this definition, we can have an analytic signal as 
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i
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  From Eq. (11), we can have the instantaneous frequency as 
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After performing the Hilbert transform to each IMF 
component, the original signal can be expressed as the real part 
( RP ) in the following form 

                  ∑
=
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B. Ensemble Empirical Mode Decomposition 
EMD is based on the local characteristic time scales of a 

signal and could decompose the complicated signal function 
(IMF). The IMFs represent the natural oscillatory mode 
embedded in the signal and work as the basis functions, which 
are determined by the signal itself, rather than pre-determined 
kernels.  

However, one of the major drawbacks of EMD is the mode 
mixing problem. To alleviate the problem of mode mixing in 
EMD, ensemble empirical mode decomposition (EEMD) is 
proposed, which is a noise-assisted data analysis method and 
defines the true IMF components as the mean of an ensemble of 
trials[7]. The EEMD algorithm can be given as follows. 

(1) Add a white noise series to the targeted data. 
                        )()()( tNtxtX +=                          (14)                                                                                                                   

(2) Decompose the data with added white noise into IMFs. 

                        )()()(
1

trtctX n

n

j
j +=∑

=

                  (15)                                                                                                            

(3) Repeat step 1 and step 2 again and again, but with 
different white noise series each time, mi ~1= , 

                          )()()( tNtxtX ii +=                     (16)             
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(4) Obtain the means of corresponding IMFs of the 
decompositions as the final result.  
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C. Simulation Analysis 
In order to verify the effectiveness of noise signal 

decomposed by using EEMD, a simulation signal is 
decomposed by using EMD and EEMD, which is composed of a 
low frequency sine and a small impact component, Fig.1 shows 
the time domain waveform of simulated signal. Fig. 2 shows the 
decomposition results by EMD. Because of abnormal 
interference of noise, LWD generates the mode mixture, and 
lead to the pseudo IMFs which cannot satisfy the requirement of 
feature extraction. Sinusoidal signal and impact signal is 
decomposed into the IMF component C1; moreover, the 
sinusoidal signal is decomposed into two IMF components C1 
and C2, the decomposition results produced a serious distortion, 
EMD generates the mode mixture, and lead to the pseudo IMFs 
which cannot satisfy the requirement of feature extraction. 

 
Fig. 1. Time domain waveform of simulated signal 

The simulation signal is decomposed by EEMD, the average 
number of decomposition is 100, and the amplitude of noise is 
0.01 times of the standard deviation of the signal. The 

decomposition results in Fig. 3 shows, C1 component 
corresponding impact signal components, components 
corresponding to C2 sine signal and sine signal, the small 
impact component and the sine signal is accurately 
decomposed.  

 
Fig. 2. Decomposition results by EMD 

                         

 
Fig. 3. Decomposition results by EEMD 

IV.    EXHAUST VALVE LEAKAGE  MONITORING  
As one of the important parts of a diesel engine, the exhaust 

valve easily suffers from leakage under the alternating load. The 
proposed method is applied to diagnosing the Exhaust valve 
leakage of diesel engine. In a certain type of four cylinder six 
stroke diesel engine under normal operating conditions and 
varying degrees of exhaust valve leakage under the three 
conditions. We collected the vibration signals from the same 
cylinder, which represent the engine in normal state, slightly 
leakage, and serious leakage condition. All data were sampled at 
25.6 kHz, and the analyzing frequency is 10 kHz. The rotating 
speed of the diesel engine is 1100 r /min around. Fig.4 a) ~ c) 
show the vibration signals of the engine exhaust valve in the 
three conditions. 

The fractal dimensions of the vibration signal are computed 
directly by using the fractal dimension estimation algorithm 
based on the morphology, as shown in Fig. 5. Because under the 
three conditions the response in the background noise are 
similar in morphology, so the fractal dimensions are very close, 
it is difficult to distinguish the exhaust valve of the state. 

EEMD is used to decompose the vibration response of the 
diesel engine from high frequency to low frequency, and it can 
be decomposed into several IMF components, which represent 
the different frequency components of the original vibration 
signal. The mechanism from the exhaust valve leakage fault, 
natural vibration component contains the fault information 
belonging to the high frequency components, so the fractal 
dimension is only IMF1 component calculation decomposed, 
can quantify the working state of the exhaust valve. Therefore, 
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morphological fractal dimension is used to estimate the IMF1 of 
diesel engine vibration response under the three conditions, the 
results are shown in Fig. 6.The fractal dimension can be clearly 
separated from the three district conditions of diesel engine 
exhaust valve leakage. 

 

                     
(a) Normal state 

 
(b) Slightly leakage 

 
(c)  Serious leakage 

Fig. 4. Vibration signals of diesel engine for valve leakage states 

 
Fig. 5. Morphological fractal dimension of vibration signals under the three 
conditions    

 

 
Fig. 6. Morphological fractal dimension of the characteristic IMF of vibration 
signals under the three conditions 

 

V. CONCLUSIONS 
EEMD can effectively separate the characteristic 

components from the nonlinear non-stationary vibration signal 
and the noise measured from the diesel engine, thereby 
improving the signal to noise ratio of the signal fractal analysis. 
By morphological fractal dimension analysis of the IMF 
component which contains the fault feature, morphological 
fractal dimension can quantitatively describe the geometric 
characteristics of the vibration signal of diesel engine. Through 
the analysis of the fractal dimension of the vibration signals 
measured from diesel engine, the results show that the proposed 
method can be applied to extract the fault characteristic 
information of the surface vibration signal and monitor the 
working conditions effectively.  
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