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Abstract. Current Statistical (CS) model is a good adaptive filtering model for maneuvering target 

tracking. While, the performance of CS model depends on the maneuvering frequency, and becomes 

poor when tracking weak maneuvering targets. Firstly, the innovation of the filtering is used to 

reduce the dependence on the constant of maneuvering frequency. Secondly, in order to improve the 

performance for weak maneuvering targets, Constant Velocity (CV) model is used to compete with 

CS model in the framework of Interacting Multiple Model (IMM) algorithm. Thirdly, to avoid the 

over-competition and enhance the probability of superior model, a time-varying model transition 

probability function is proposed with the current measure. Simulation results show that this method 

greatly improves the performance for weak maneuvering targets, and the performance for strong 

maneuvering targets is similar to that of the CS model. 

1 Introduction 

Maneuvering target tracking is widely used for both civilian and military needs, and the first task is 

to find appropriate motion model. It was pointed that target tracking depends on the effective 

information extracted from the observation of target[1].A good model is worth thousands of data. 

Currently, there are two main directions for the modeling of maneuvering targets, one is the 

single-model algorithm, and the other is the multi-model algorithm. Based on the Singer model[2], 

the CS model[3] assumed the acceleration in the next moment can only be in the neighborhood of 

the current acceleration, the current probability of the acceleration obeys modified Rayleigh 

distribution.  

The good performance of CS model for tracking high maneuvering targets has been proved yet. 

While, the performance of this algorithm depends on the constant of maneuvering frequency. If the 

constant is set improperly, the tracking performance would become poor. Also, CS model is not 

proper for weak maneuvering targets, especially for the constant velocity targets [4]-[6].When the 

maneuvering is strong, the constant of maneuvering frequency should be set bigger, and vice versa. 

The maneuvering can be described with the innovation of the filtering. If the innovation becomes 

larger, the maneuvering becomes stronger. So, we use an innovation function to modify the constant 

of maneuvering frequency, and a modified CS (MCS) model is proposed. 

In [7], Blom and Bar-Shalom proposed an IMM algorithm with Markov transition probability. 

This algorithm considers the interaction between each model to estimate the target state. The core of 

the algorithm is to choose the model sets which can include all possible motions. We choose CS 

model and CV model as the model sets of IMM, which can improve the performance of CS model 

algorithm for weak maneuvering tracking by the competing of CV model. The Markov transition 

probability between every model is constant in the traditional IMM algorithm. In fact, the process 

should be a sojourn-time-dependent process[8]. If the previous state model keeps longer, the 

probability of this model is higher. So, at a certain moment, if the probability of one model is larger 

than the previous moment, the transition probability to its own should be strengthened, to another 

should be reduced. Based on this idea, some researchers[9]-[11] have tried to introduce a weighting 

factor to adjust the transition probability. In [12], a time-varying transition probability is proposed 

from Bayesian theory. We use this method to improve the traditional IMM algorithm, in which the 

transition probability between the models can be adjusted dynamically, and the competition of the 

improper model is weakened. 

The organization of this work is as follows. The adaptive IMM (AIMM) algorithm based on CS 

model and CV model is presented in Section two. An improved algorithm is given in Section three 
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where the MCS model based on the adjustment of maneuvering frequency constant is proposed, the 

time-varying transition probability is given, and the time-varying adaptive IMM(TAIMM) 

algorithm based on MCS model and CV model is given. In the Section four, a numerical example 

compares the performance of the MCS model algorithm with the CS model, the TAIMM algorithm 

with the MCS model algorithm and the AIMM algorithm. In the last Section, the conclusion is 

given. 

2 Target Tracking Model 

2.1 Motion Model 

a). Target State Equation 

The target’s discrete state equation can be expressed as 

 
( ) ( ) ( ) ( ) ( )( ) ( | 1) ( 1) ( 1) ( 1) ( 1)i i i i ik k k k k a k k       X Φ X U W  (1) 

Where 1i   means non-maneuvering motion model; 2i   means maneuvering motion model.

Φ  is the state transition matrix and U is the input control matrix.a is the mean value of current 

acceleration during the sample period ( 1)k T . W is Gaussian white noise. 

When the target is non- maneuvering, CV model is used, the target state vector can be expressed 

as 
(1) ( ) [ , ]k k Tk r rX , kr  and kr  are the range and velocity of the target. 

(1)
1

( | 1)
0 1

t
k k

 
   

 
Φ  

is the state transition matrix, t  is the interval of the observation, the mean of acceleration 
(1) 0a  , dynamic noise 

(1) (1)( 1) ~ (0, )k NW Q ,
(1)

Q  is the covariance of system noise. 

When the target is maneuvering, CS model is used, then the target state vector can be expressed 

as 
(2) ( ) [ , , ]k k k Tk r r rX , kr , kr and kr  are the range, velocity and acceleration of the target. The 

mean of acceleration (2) 0a  , dynamic noise 
(2) (2)( 1) ~ (0, )k NW Q , CS model can adaptively 

track maneuvering target from the expression (2) 2

02 aQ Q , where   is the constant of 

maneuvering frequency, the expression of 
(2) ( | 1)k k Φ , ( 1)k U , 2

a  and 0Q  can be found 

in[3]. From the equation (2) 2

02 aQ Q , we can know that the performance of CS model 

algorithm depends on the constant of maneuvering frequency, if the constant is set improperly, the 

tracking performance would become poor. 

b).Target Measurement Equation 

If the measurement data is only for the position, the measurement equation is 

 
( ) ( )( ) ( ) ( ) ( )i ik k k k Y H X V

 
(2) 

Where (1)
1 0

( )
0 1

k
 

  
 

H , (2)
1 0 0
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0 1 0
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H
,

( )kV is Gaussian white noise with zero mean 

value and its covariance matrix is ( )kR . 

2.2 Adaptive Interacting Multiple Models (AIMM) 

The steps of IMM algorithm are input interacting, model conditional filtering, model probability 

updating and estimate fusion. The IMM algorithm block diagram based on the interaction between 

CS and CV models is as follows: 

a). Input Interacting 
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Assuming that transition probability is
ijP , ˆ ( 1| 1)jX k k- - is the state estimation from filter j at time

1k  , ( 1| 1)jP k k- - is corresponded to error covariance, ( 1)j km - is the probability of model j at time

1k  , and , 1,2=i j , so two filters inputs are calculated as 

 

2
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b). Model Conditional Filtering 

The input of model j at time k are ˆ ( 1| 1)ojX k k- - and ˆ ( 1| 1)ojP k k- - , and after Kalman filter, the 

output are ˆ ( | 1)jX k k - and ˆ ( | 1)jP k k - . 

c). Model Probability Updating 

If the filtering innovation of model j is ( )jv k , and ( )j kS is covariance, assuming that the innovation 

obeys the Gaussian distribution. So the likelihood function is as follows 

 

11 1
( ) exp{ [ ( ) ( ) ( )]}

22 ( )
j

T

j j j

j

k v k S k v k
S k
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Where 
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The model probability is updated as 
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d). Estimate Fusion 
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3 Time-varying Adaptive IMM Algorithm (TAIMM) 

3.1  Modified CS model algorithm (MCS) 

From equation 4, the covariance matrix of CS model algorithm is related to maneuvering frequency 

constant. In order to obtain better performance for tracking, a larger constant should be chosen for 

high maneuvering and a smaller one for weak maneuvering (if the constant is equal to zero, CS 

model is turned into CV model). The innovation of the target in CS model filtering reflects the 

maneuvering index of the target. The target innovation at time k is 

             ( ) ( ) ( ) ( | 1 )v k Y k H k X k k                                    (14) 

The dynamic adjustment function is 

( ( ))
( ( )) 1 exp( )

( )

k
f k

S k





                                  (15) 

Where ( )S k is the corresponding covariance of innovation and 2  . When ( ) 3v k R , 2  . 

When ( ) 3v k R , 4  . R is measurement noise covariance. 

When the target is maneuvering with a larger acceleration, ( ( )) 1f k  . When the target is 

maneuvering with a smaller acceleration, ( ( )) 0f k  . At each sampling moment,  changes into

( ( ))f k    , and all the values associated with  have changed accordingly. 

3.2 Time-Vary Transition Probability of the Model 

In traditional IMM algorithm, the model switching is assumed to be governed by a Markov chain 

with the pre-determined transition probabilities matrix such as 

 
( 1) { ( ) | ( 1)}ij j i ijp k P M k M k p  

 
(16) 

Where ( ), 1,2,...NjM k j  , and it means that transition probability is constant. It has nothing to 

do with the sampling time k .The probabilities should be considered as a function of sample time, 

and corrected by the latest measurement. So transition probabilities are redefined as follows 

 1( 1) { ( ) | ( 1), }k

ij j ip k P M k M k Y    (17) 

Where  1

1 2 1, , ,k

kY Y Y Y


 
is the measurement before 1k   sample period, and its one-step 

estimation transition probability is as follow 

 ( | 1) { ( ) | ( 1), }kij j ip k k P M k M k Y   (18) 

It can also be regarded as time 1k   of transition probability posteriori estimation, based on 

Bayesian theory, the transition probability of prediction can be expressed as 

             
1

( | 1) { ( ) | ( 1), } ( 1) ( )
( 1)

k

ij j i ij ij

i

p k k P M k M k Y p k k
c k

    


 (19) 

( 1)ijp k  is the transition probability at time 1k  , ( )ij k is the likelihood of measurement 

conditioned on the models over two recent sample period and measurement sequence 
1kY 
 and kY . 

 1( ) [ | ( ), ( 1), ]k

ij k j ik f Y M k M k Y    (20) 
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( )f is the probability density function, and 
1

( 1) ( 1) ( )
N

i ij ij

j

c k p k k


   is the normalized factor. 

Regardless of the measurement before time 1k  , the measurement value 1kY  can be approximately 

estimated with filtering value of model i at time 1k   

 
1 ˆ ( 1| 1)k iY X k k     (21) 

 ˆ( ) [ | ( ), ( 1), ( 1| 1)]i

ij k j ik f Y M k M k X k k      (22) 

If the function obey Gaussian distribution, then 

 ˆ( ) [ ; ( | 1), ( | 1)( ) ]j ij j ij j T j

ij k k k k kk N Y H X k k H P k k H R      (23) 

ˆ ( | 1)ijX k k   and ˆ ( | 1)ijP k k   are state estimation and covariance matrix which use the filtering 

value and covariance of the model j  to estimate the model i .Suppose that in a sampling time 

period the transition probability is constant, so 

 ( ) ( | 1)ij ijp k p k k?  (24) 

4 Simulation Results 

In order to test the effectiveness of the new algorithm, Monte Carlo trials are used. The root mean 

square error (RMSE) of the state estimation is used to evaluate the performance  

 

N
2

1

1
ˆ( ) [ ( | ) ( | )]

N

i

i

RMSE k x k k x k k


 
 

(25)

 

Where N  is the number of Monte Carlo trials, and ( | )ix k k  is the real target state at sampling 

time k and ˆ( | )x k k is the estimation of target state.  

4.1 Simulation Condition 

Target state transition probabilities matrix is a Markov chain with two models, which are the CS 

model (α 1/ 20 ) and CV model. The covariance of measurement is
2R 5000m , 2

max 80m / sa   ,

2

max 80m / sa  , N 100 ,the initial value of transition probabilities matrix is 
0.9 0.1

0.1 0.9

 
 
 

.Simulation 

of target trajectory is divided into three stages. The initial value of target state is (0,200m / s,0) . The 

sampling period is 1 second. 

Stage I: From 0st   to 30st  , target moves at a constant velocity(
20m / sa  ). 

Stage II: From 31st   to 60st  , target moves at a constant acceleration (
240m / sa  ). 

Stage III: From 61st   to 100st  , target moves at a constant acceleration (
220m / sa   ). 

a). CS model algorithm and the MCS model algorithm 

Fig. 1(a) and Fig. 1(b) give the velocity and acceleration RMSE of CS model and MCS model. 
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(a) The velocity RMSE of two algorithms               (b) The acceleration RMSE of two algorithms 

Fig. 1 Comparisons of the mean square root error of two algorithms 

4.2 Simulation Analysis 

As is shown in Fig.1, when CS model algorithm is used, the performance for strong maneuvering 

target (Stage II and Stage III) is better than for the weak maneuvering target (Stage I). The constant 

of maneuvering frequency is set to 1/20, so the system variance is corresponding to this constant. In 

MCS model algorithm, the maneuvering frequency is changed dynamically with the maneuvering 

trend. Thus, the system variance is adjusted dynamically. Although this algorithm converges slower 

than CS model algorithm at the time of acceleration varying sharply, it greatly improves the 

tracking performance in the steady tracking stage. 

This modified CS model algorithm obtains better performance for tracking both strong 

maneuvering and weak maneuvering target. While, the performance for tracking weak maneuvering 

target is still worse than that of tracking the strong maneuvering target. 

a.). MCS model algorithm, AIMM algorithm and TAIMM algorithm 

Fig. 2 gives the velocity and acceleration RMSE of MCS model algorithm, AIMM algorithm, and 

TAIMM algorithm. 

 
(a) The velocity RMSE of three algorithms     (b) The acceleration RMSE of three algorithms 

Fig. 2 Comparisons of the mean square root error of three algorithms 

Fig. 3 (a) and (b) are probabilities distributions of the model selection for AIMM algorithm and 

TAIMM algorithm in the three stages respectively. 
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(a) Model probabilities with AIMM       (b) Model probabilities with TAIMM 

Fig. 3 Probabilities of the model selection for two algorithms 

4.3 Simulation Analysis 

As is shown in Fig. 2, the MCS model still has a larger tracking error for weak maneuvering targets 

(Stage I).With AIMM algorithm, the performance for tracking weak maneuvering target is improved 

due to the competition of the CV model, and the convergence at the time of acceleration varying 

sharply is also improved. While, the performance for tracking strong maneuvering target becomes 

worse. With TAIMM algorithm, the model transition probability is adaptive with the current 

measure. The model with larger model probability is more likely to transfer to itself, and reduce 

influence about undesirable competition. As is shown in Fig. 3, with TAIMM algorithm, the 

probability is distinguished with each other well for the adaptive transition probability. TAIMM 

algorithm is a tradeoff between MCS model algorithm and the AIMM algorithm. It can obtain good 

performance for tracking weak maneuvering target as CV model, and also obtain similar 

performance for tracking strong maneuvering target as MCS model. 

5 Conclusion  

A time-varying adaptive IMM algorithm is proposed in this paper. The model sets only include two 

sets, MCS model and CV model, which would have certain value for tracking maneuvering target in 

engineering.  

References 

[1]LI X R, Jilkov V P. Survey of Maneuvering Target Tracking-Part I: Dynamic Models[J]. IEEE 

Transactions on aerospace and electronic systems, 2003, 39(4):1333-1364 

[2]Singer R A. Estimation Optimal Tracking Filter Performance for Manned Maneuvering 

Targets[J], IEEE Transactions on Aerospace and Electronic Systems, 1970, 6(4), 473-483. 

[3]Zhou H, Kumar K. A Current Statistical Model and Adaptive Algorithm For Estimating 

Maneuvering Targets[J], AIAA Journal, Guidance, Control Dynamics , 1984, 7(5):596-602. 

[4]Yongjian Yang, Xiaoguagn Fan. A new parameters adaptively adjusting method of current 

statistical model[J], Proceeding of the 2015 IEEE International Conference on Information and 

Automation, 2015:1738-1742. 

[5] Wei Sun, Yongjian Yang. Adaptive Maneuvering Frequency Method of Current Statistical 

Model[J], IEEE/CAA Journal of Automatic Sinica , 2016:1-7.  

[6] Wen Li, Qingdong Li. Maneuvering Acceleration Assisted Attitude Algorithm Design Based on 

Fuzzy Adaptive Kalman Filter[C], Proceedings of 2014 IEEE Chinese Guidance, Navigation and 

Control Conference,2014:1501-1505. 

[7]Blom H A P, Bar-Shalom Y. The Interacting Multiple Model Algorithm for Systems with 

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sampling Time(T=1s)

M
o
d
e
l 
P

ro
b
il
it
y

 

 
CS Model

CV Model

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sampling Time(T=1s)

M
o
d
e
l 
P

ro
b
il
it
y

 

 
CS Model

CV Model

64

Advances in Engineering Research (AER), volume 131



Markovian Switching Coefficients[J], IEEE Transactions on Automatic Control, 1988, 

33(8):780-783. 

[8]L. Campo, P. Mookerjee, Bar-Shalom Y. State estimation for Systems with a 

Sojoum-Time-Dependent Markov Swithing Model[J]. IEEE Trans on Auto. 

Control,1991,36(2):238-243. 

[9]Eun Y, Jeon D. Fuzzy interence-based dynamic determination of IMM mode transition 

probability for multi-radar tracking[C]. International Conference on Information Fusion. IEEE, 

2013:1520-1525. 

[10] Xin Bi, Wei Wang, JieGao and Jinsong Du. The improved IMM tracking algorithm for 

high-speed maneuvering target[C]. Intelligent detection and laboratory equipment. 2015:1-3. 

[11]GUO Z, DONG C Y, CAI Y L, et al. Time-varying transition probability based IMM-SRCKF 

algorithm for maneuvering target tracking[J]. Systems Engineering and Electronics, 

2015,37(1):24-30. 

[12] ZHENG D K, WANG S Y.A new interacting multiple model algorithm for maneuvering target 

tracking based on adaptive transition probability updating[C]. IET International Radar Conference. 

2015:5-5. 

65

Advances in Engineering Research (AER), volume 131




