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Abstract. To improve performance for integrated exploration algorithms of multi-robot systems, a 

two-stage coordinated strategy is proposed in this paper. In the first stage, all robots explore unknown 

environments by a kind of forth and back trajectories which are shaped by social entropy and a voting 

mechanism. In the second stage, the solving process of coordination problem for multi-robot systems 

is modeled as a blackboard system, and each robot contributes a solution to the question determined 

by a capacity constrained auction algorithm. The proposed approach is verified by computer 

simulations for obstacle free environments. 

Introduction 

Integrated exploration approaches which considered coordination, mapping, localization and motion 

control tasks simultaneously is preferred. However, only a few of results about the topic have been 

reported [1-2]. On the other hand, a great deal of results has been proposed for the coordination of 

multi-robot systems. There is market economy based approaches [3-6], evolutionary computing based 

approaches [7-9], decision-theoretic approach [10], etc. These methods realized task assignments. 

Meanwhile, they considered route planning under intra-path constraints [7], cooperation among 

robots [3], and dispersion of robots over the environment [10] in the explorations of unknown 

environments.  

Shannon’s information entropy has been utilized as a measure for uncertainty about robots [8]. 

Hierarchic social entropy that is an application of Shannon’s information entropy was introduced as a 

continuous and quantitative measure for robot group diversity [11]. In this paper, the property that 

social entropy can represent spatial distribution of homogeneous robots is utilized to shape 

trajectories of robots over an unknown environment. Moreover, the exploring trajectories of all robots 

are used to partition operational environment into a set of sections. Notwithstanding the partitioning 

is not balanced, the subsequent auction actions will balance tasks among robots. 

Recently, a three-level optimization algorithm was proposed to coordinate emergency medical 

service robot team [12]. In the approach, a globally efficient solution at each level is obtained by a 

medication of auction algorithm. The time complexities of sing-item, multi-item (greedy), multi-item 

(optimal), and combinational auctions were compared in [6]. Moreover, computational complexity 

exists in determining the cost to perform a task that requires solving path planning of multi-robot 

systems; an instance is traveling salesman problem (TSP) which is NP-hard. Differently with the 

available approaches, the auction algorithm is utilized to solve a blackboard system which represents 

the coordination problem in the proposed approach. At the same time, the dispersion of robots over 

the environment is considered. 

Zigzag motion is an effectively way to cover the environment the robots located [13]. Inspired by 

the result meanwhile considering error corrections, a generalized forth and back -- rectangle 

trajectories are adopted by all robots of a multi-robot system in the present work. The rest of this paper 

is organized as follows. Section 2 discusses coordination based on social entropy. Section 3 discusses 
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coordination formulation and solving by an auction algorithm. Section 4 validates the proposed 

approach by computer simulations. And Section 5 concludes the paper. 

Entropy Based Exploration 

As shown in Fig.1, there are two robots R1 and R2, and the two black circles are the initial locations of 

the two robots, respectively. All the four longer edges in the two trajectory rectangles are vertical. For 

convenience of discussion, it is named that both R1 and R2 has vertical auxiliary exploring direction. 

Similarly, there is horizontal auxiliary exploring direction. The direction that a robot will follow when 

it has closed a rectangle trajectory for the first times is named as auxiliary exploring direction. 

It is assumed that all robots have no knowledge about the environment except relative poses 

between robots [2]. In order to simplify the discussion, the moving directions for each robot is 

restricted to up, down, left and right. 

At the beginning of exploration, the social entropy is calculated based on the relative distances by 

each robot. Then, each robot selects a candidate exploring direction by minimizing the entropy. As 

discussed in [13] and shown in Fig.1, only in the case that all robots have parallel auxiliary exploring 

direction can they cooperatively explore a region of the environment well. So, a common auxiliary 

exploring direction should be determined first. 

To obtain the common auxiliary exploring directions, a voting mechanism based on all candidate 

exploring directions is utilized, i.e., if the sum of numbers of up and down candidate exploring 

directions is bigger than the sum of numbers of left and right candidate exploring directions, then the 

common auxiliary moving direction is vertical (consists of up and down directions); else the common 

auxiliary exploring direction is horizontal (consists of left and right directions). 

If a robot has candidate exploring direction consistent with the common auxiliary exploring 

direction, then no re-selection of auxiliary exploring direction is needed; else a re-selection of an 

auxiliary exploring direction from two consistent directions is needed. The re-selection is based on 

minimizing the social entropy. After a robot reached at border along its auxiliary exploring direction, 

its temporary exploring direction is determined by minimizing the entropy too.   

 

 

Fig.1. Demonstration for cooperative exploring trajectories and sections 

Besides above auxiliary and temporary directions, subsequent exploring directions are determined 

to form a rectangle. The exploration discourse of a robot that started from its initial location is named 

as the first exploration stage. Whenever a robot cannot explore unknown area in the first stage, it is 

said that the robot switched to the second stage. A flowchart describing the proposed coordinated 

strategy for a robot is given in Fig.2. 
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Fig.2 A flowchart of two-stage coordinated strategy 

Auction Based Exploration 

At the beginning of the second stage, there are at most n sections partitioned by the explored areas and 

borders of the environment. For example, there are two sections S1 and S2 on the environment shown 

in Fig.1. In order to assign sections to robots, and disperse all robots over the environment, each 

section is attributed by <dj, bj, ncj, qj>(j=1,…,n), where dj is the width, bj=<lj, uj>  the border 

coordinates, where lj and  uj are the lower and upper coordinates, respectively, ncj is the  capacity, and 

qj={unscanned, to_be_scanned, being_scanned} is a status of the section. cjn  means the maximal 

number of robots that a section Sj with status unscanned can contain. It is calculated according to the 

size of the section by the following algorithm. 

Algorithm 1. Section capacity calculation. 

1) If dj>0, then ncj=1. 

2) Construct a temporary variable set Dt={dtj|j=1,…,n}, initially dtj = dj (j=1,…,n ). 

3) If 



n

j

acj nn
1

, where ncj is the current capacity value, an is the number of robots taking part in 

the task assignment, then go on; else end. 

4) t
nj
Dp

,...,1
maxarg


 , 1 cpcp nn , and 0ddd tptp  , where 0d  is the maximal area a robot can scan 

in a task assignment period. 

5) If 0 tjd , then end; else go to step 3). 

It must be marked that d0 in 3) is represented in form of section width, and d0=2r  in ideal case, 

where r is the detecting rang of the robot considered. The coordination of the multi-robot system is to 

force all widths of explored sections to zeros. Then, the coordination is formulated as a blackboard 

system 
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where dj(k)≥0 is current width of the jth unknown section, k (k=1, 2, …) is a series of discrete time 

instants when any robot completed its task, and n is the size of the multi-robot system considered. All 

robots share the unexplored information and strive to scan the remained portion of the environment. 

So, a sequential single-item auction algorithm is utilized to solve (1). In the auction algorithm, utility 

of each section is selected as the width of each unknown section, and the cost is taken as the distance 

from the robot current location to the nearest border of the section. Afterwards, the section is divided 

into at most ncj sub-sections (hereafter section) and the status of each section is set to to_be_scanned, 

and is changed to being_scanned after the robot reached at the section. The auction actions are 

asynchronous. The auctioneer assign total at most ncj robots to section j by minimizing the individual 

evaluations (utility minimize cost). 

If the sum of total available capacity is less than the number of free robots, the remained robots bid 

for sections with the status variables being to_be_scanned. If there are still free robots after above 

assignment, the robots bid for sections with status variable being being_scanned. After a robot has 

closed its trajectory, then dj(k)=dj(k-1)-Δdj(k), where Δdj(k) is the area actually covered by the robot 

from time k-1 to k. As soon as a robot closed its trajectory, the capacities of all available sections are 

re-calculated.  

Computer Simulations 

Computer simulations have been conducted through Matlab™ 7.1 on a personnel computer with 

Intel® Core(TM) i5-3470 CPU and 4GB RAM. An obstacle free indoor environment which has area 

of 100×100 m
2
 is selected as simulated scenario. The proposed two-stage coordinated approach 

(TSCA) is compared with decision-theoretic approach (DTA) [10], and repeated auction approach 

(RAA) [4]. 

All robots have the same moving speed of 0.20m/s, sensing range r= 4m, and the waiting time at an 

auction period is 5s. 30 runs for each algorithm with the individual team sizes have been conducted. 

At the beginning of each run, all robots are randomly located on the environment. The purpose of the 

exploration for the multi-robot system is completely covering the environment. Fig.3 (a) and (b) 

shows that the proposed approach saved exploration time, and coordinate framework transformation 

times, respectively. The reduction of coordinate transformation times save computational cost of 

postprocessing to obtain a global map [14]. Fig.3 (c) and (d) shows that our approach simplified task 

assignment procedure.  
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      (a) Exploration times                           (b) Coordinate transformation times 

 

          
   (c) Idle times                                           (d) Auction times 

Fig.3. Performance comparison for the three approaches 

 

Fig. 4 shows trajectories for a case of two robots coordinated by the three algorithms. It is shown 

that the trajectories of robots coordinated by the proposed approach are more regular and smoother 

than those of the other two coordinated algorithms. 
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(a)Trajectories for DTA         (b)Trajectories for RAA       (c) Trajectories for TSCA 

Fig. 4. A case for trajectory comparisons 

Conclusions 

A simple yet effective coordination strategy has been proposed for integrated exploration of unknown 

obstacle free environments of multi-robot systems. How to endow the proposed approach an ability to 

deal with coordination in obstacle occupied environments is future work. 
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