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Abstract. This paper proposes a algorithm for 3D near-field source localization, which uses the cross 

array and fourth-order cumulant. We construct two high-dimensional matrices by using these six 

fourth-order cumulant matrices, according to the subspace theory, we can extract the rotation factors, 

which contain the parameter information of the sources. Then it is possible to obtain the elevation 

angle, azimuth angle and range of the sources. This algorithm doesn't need spectral peak search.The 

high degree of freedom of the higher order cumulants makes it unique advantages over traditional 

methods, such as the ability to avoid loss of apertures and the natural resistance to Gaussian noise. 

The results of MATLAB simulation show that this is an effective three-dimensional parameter 

estimation algorithm for near-field source. 

1. Introduction 

Source localization can be classified into far-field source localization and near-field source locali-

zation according to the range between the sources and the array. In both cases, the wave-fronts of 

incoming signals are different completely, so that they have different signal models [1, 2]. In the 

far-field source localization [3-6], the wave-front of the incoming signal is assumed to be a plane 

wave propagating in space, so each source is parameterized by only the Direction-Of-Arrival 

(DOA).But in the near-field, the signal wave-front is spherical, and both the DOAs and ranges are 

needed [7-17]. The algorithms in reference [18-20] were addressed to deal with three-dimensional 

(3D) source localization, which are joint azimuth angle, elevation angle and range estimation prob-

lem. But if they need spectral peak search that will lead compute very complexly. 

In reference [1], it defined fourth-order cumulant matrix from the received signal, then constructed 

a high-dimensional matrix, and used the subspace theory to obtain the parameter estimation of the 

angle and range of the source, but this method can only get two-dimensional parameter estimation. 

We learned and used this method, so proposed a method for 3D near-field source location using 

cross-array and fourth-order cumulant. So that we can get three-dimensional parameter estimation.  A 

cross-array which in the  XOY plane is proposed in reference [2], while the Y axis has only three 

elements. It can get the three-dimensional parameter estimation of the source via the fourth-order 

cumulant, but the utilization efficiency of the element is relatively low. Compared the two methods, 

the algorithm in reference [2] suffers a heavy loss of the array aperture. The algorithm in this paper 

has a good estimation accuracy and performance, avoiding the aperture loss, which has a great impact 

on the resolution. Also, the high degree of freedom of the higher order cumulant makes it unique 

advantages over traditional methods, such as it does not require spectral peak search, the ability to 

avoid loss of apertures and the natural resistance to Gaussian noise. The results of MATLAB 

simulation show that this is an effective three-dimensional parameter estimation method for 

near-field source, its performance is better. 
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2. Data Model 

 

Fig. 1.  Cross-array for 3D near-field source localization 

Similar to [1, 2], we consider that there are K narrowband and independent non-Gaussian near-field 

radiation sources radiated to the cross array, as shown in Fig. 1. Each subarray contains 2N equally 

spaced omnidirectional sensors, the interval between two adjacent elements is / 4  , and the 

intersection of the array is selected as the reference point of the phase. After being down-converted to 

baseband and sampled at a proper sampling rate that satisfies the Nyquist rate, the signals received by 

the (i, 0)-th and (0, i)-th sensors in the subarray can be expressed as follows, 
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while ( )zin t  and ( )xin t  represent the additive measurement noise, k , k  and kr  denote the 

elevation angle, azimuth angle and range of the k-th source, for    1,  . . . ,  k K , respectively.  

The same, similar to the reference [1], throughout the rest of the paper, the following hypotheses 

are assumed to hold. 

(1) The sources are statistically mutually independent of non-Gaussian narrow-band stationary 

processes, with non-zero kurtosis. 

(2) The sensor noise is zero-mean Gaussian signal and independent of the source signals, which 

variance is 2 . 

(3) The source parameters are different from each other, that is xi xj  , i jr r  . 

(4) The distance between the elements must be met min( / 4)kd  , the number of sources and the 

number of elements must be met 2 2K N  . 
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3. Algorithm Description 

3.1 Define Six Fourth-order Cumulant Matrices 

Similar to [1], we defined the fourth-order cumulant matrix 1C , for different sensor and time lags , the 

(m,n)-th element of which has the following form, 

   2* *

1 1 1 4

1

( , ) ( ), ( ), ( ), ( ) = zk

K
j m n

m N m N n N n N sk

k

C m n cum z t z t z t z t c e


     



  ,                   (3) 
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4 (t), (t), (t), (t)sk k k k kc cum s s s s  is the the fourth-order kurtosis of the 

k-th source. Note that 1C  can be represented in a compact form as  
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The superscript H denotes the Hermitian transpose, 4 4 1 4,...[ , ]s s sKC diag c c ,  1,...,z z zKA a a . Like-

wise, the following can be obtained, 

   22* *

2 ( 1) 1 ( 1) 1 4 1 4

1

( , ) ( ), ( ), ( ), ( ) zkzk

K
j m nj H

m N m N n N n N sk z z s z

k

C m n cum z t z t z t z t c e e A C A
 

       



    ,           (5) 

   22* *

3 1 1 4 2 4

1

( , ) ( ), ( ), ( ), ( ) zkzk

K
j m nj H

m N m N n N n N sk z z s z

k

C m n cum z t z t z t z t c e e A C A
 

     



    ,             (6) 

where  1 22 2 2

1 , ,...,z z zKj j j

z diag e e e    ,  1 22 2 2

2 , ,...,z z zKj j j

z diag e e e     ,1 , 2 2m n N   . 

Also the following can be get, 

   2* *

4 1 1 4 4

1

( , ) ( ), ( ), ( ), ( ) xk

K
j m n H

m N m N n N n N sk x s x

k

C m n cum x t x t x t x t c e A C A


     



   ,          (7) 

   22* *

5 ( 1) 1 ( 1) 1 4 1 4

1

( , ) ( ), ( ), ( ), ( ) xkxk

K
j m nj H

m N m N n N n N sk x x s x

k

C m n cum x t x t x t x t c e e A C A
 

       



    ,    (8) 

   22* *

6 1 1 4 2 4

1

( , ) ( ), ( ), ( ), ( ) xkxk

K
j m nj H

m N m N n N n N sk x x s x

k

C m n cum x t x t x t x t c e e A C A
 

     



    ,      (9) 

where  1 2, ,...,x x x xKA a a a ,  1 22 2 2

1 , ,...,x x xKj j j

x diag e e e
  

  ,  1 22 2 2

2 , ,...,x x xKj j j

x diag e e e
  

  ,

1 , 2 2m n N   . Since all the source signals are assumed to have nonzero kurtosis, 4sC  is an in-

vertible diagonal matrix. Besides, because of the assumption i j , xi xj  , zi zj   and i jr r , So 

zA and xA  are all    2 2 2 2N N    Vandermonde matrices with full column rank K, 1C ~ 6C  are all 

   2 2 2 2N N   dimensional matrices with rank K. 

We can construct a high-dimensional matrix, 

    1 2 3 4 1 4 2 4 1 2 4 4

TT TH H H H H

z z s z z z s z z z s z z z z z z s z z s zC C C C A C A A C A A C A A A A C A A C A         
% (10)                                    

The same operation, we can get =[ 4 5 6]T

xC C C C , the superscript T denotes transpose. 
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3.2 Parameter Estimation  

Singular value decomposition to the high-dimensional matrices, for example 

H

z z z zC U S V .                                                                  (11) 

While zU , zS  are    6 6 6 6N N   high-dimensional matrices, and zV  is    2 2 2 2N N    di-

mensional matrix, Let the left singular value vector matrix 1 2 (6 6), ,...,z z z z NU u u u 
    , and the singular 

value vectors corresponding to K larger singular values are taken out , so we can get 

 1 2, ,...,z z z zkE u u u . From the subspace theory z zE T A % , zE could be divided into three 

 2 2N K  dimensional matrices , ,za zb zcE E E , So that we can get, 
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From the formula (14) ,  we  can get two important equations, 1
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2za zc zE E T T     .                                                                                                                        

In the above formula, the “ ( ) ” denotes pseudo inverse, Extract the rotation factors and perform the 

eigenvalue decomposition operation. It can be found that the extraction of the rotation factor to get 

the eigenvalue can obtain the parameter information of the source, the parameter zk  and zk which 

containing the location information of the sources can be obtained from 1z , 2z , 
'

2
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1
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intermediate variables, we can get the multidimensional parameter estimation of the source  
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The same operation is used for xC , so we can get the parameters estimation in another dimension, 
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3.3 Parameters Pairing 

Similar to the reference [1], find the position of the largest element of the modulus in each row of ttR , 

we can get the correct order of elevation angle and range parameters from the source.  
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Also we can get azimuth angle and the correct corresponding range parameters again. It can be seen 

in the hypothesis, the range from different sources are different, i jr r ,  [1, 2], compare the results of 

the range parameter estimates obtained twice to find the correspondence. 

'
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3.4 Algorithm steps 

The proposed method can be described as follows. 

Step1. Estimate fourth-order cumulant matrices 1 2 3 4 5
ˆ ˆ ˆ ˆ ˆ, , , ,C C C C C  and 6Ĉ , then construct zC  and xC . 
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Step2. Singular value decomposition to the high-dimensional matrices zC  and xC  , then according to 

the subspace theory, get the rotation factors 1 2 1 2, , ,z z x x    , Eigenvalue decomposition of these 

rotation factors., get ˆˆ ,zk zk   and ˆˆ ,xk xk   which containing the location information of the sources. 

Step3. Match the parameters ˆ
zk  and ˆ

zk , ˆ
xk  and ˆ

xk  , get the parameters estimation  ˆ ˆ, zr  and 

 ˆ ˆ, xr  respectively. 

Step4. Match the two sets of data  ˆ ˆ, zr  and  ˆ ˆ, xr , get three-dimensional parameter estimation of 

the source  ˆ ˆ ˆ, ,r  .  

4. Simulation Results 

Assumptions are as described above, consider there are 2 near-field sources located at 

{ 1 40  o , 1 50  o , 1 0.9r  } and { 2 50  o , 2 45  o , 2 0.3r  },Each Monte Carlo simulation ex-

periment runs 500 times independently. The performance of the algorithm is measured by the root 

mean square error (RMSE) of the estimated parameters, for example, 
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Fig. 2,  Fig. 3 and Fig. 4 depict the RMSE of the parameter estimation when the number of 

snapshots is 300, 500 and 700, respectively. Fig. 5, Fig. 6 and Fig. 7 depics the scatter figure of angle 

and range in different dimension, respectively. Fig. 8, Fig. 9 and Fig. 10 compares the proposed 

algorithm and the algorithm in reference [2], respectively, while the  number is set equal to 500, and 

the SNR varies from 5 db to 25 db.  Fig. 10, Fig. 11 and Fig. 12 compares the proposed algorithm and 

the algorithm in reference [2], respectively, while the SNR is set equal to 20 db,and the snapshot 

number varies from 20 to 1000. 
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Fig. 5. Scatter figure of elevation         Fig. 6.  Scatter figure of  elevation               Fig. 7.  Three-dimensional 

and azimuth angles                                    angle and range                                          coordinates 
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Fig. 11.  Estimation RMSE of               Fig. 12.  Estimation RMSE of             Fig. 13.  Estimation RMSE of 

elevation angle                                        azimuth angle                                             range 

 5. Conclusion 

We propose a cross array in the XOZ plane, construct six fourth-order cumulant matrices, which can 

construct two high-dimensional matrices. According to the spatial theory, we can extract the rotation 

factor to obtain the multidimensional parameter estimation of the source, but in the result, we must do 

the parameter matching work. Theoretical analysis and computer simulation results show that the 

algorithm is effective. 
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