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Abstract. In digital image processing, classic wavelet algorithm often has difficulties in obtaining 

accurate wavelet coefficients by using continuous integral formula. Hence, clear and accurate edges 

of images cannot be detected in the classic wavelet algorithm. To deal with this problem, a new 

algorithm is proposed to detect image edges with sparse representation of interpolation wavelets. By 

utilizing the special property that image pixel values can be considered as interpolation wavelet 

coefficients, interpolation dual filter is combined with Mallat pyramidal algorithm in this algorithm. 

Theoretical analysis and experimental results demonstrate that this algorithm can avoid integral 

formula for obtaining wavelet coefficients. Thus, compared to the classic one, a better edge result 

can be detected for the new algorithm. 

Introduction 

Edges can be considered as a set of pixels whose values have step or roof changes. Due to 

sensitivities to high- frequency signal, differential operators can effectively reflect such rapid 

changings. Thus, they may be one of the most important tools in traditional edge detection 

algorithms. However, differential operators often have difficulties in distinguishing edges accurately 

from noisy images since noise generally contains a mass of high-frequencies. 

To solve the above-mentioned problems, Mallat proposed an effective edge detection algorithm 

by application of wavelets[1][2]. Since wavelet transform is an effective method to analyze signals 

in time-frequency, it can effectively describe sharp changes in localization of images. Hence, when 

wavelet transform[3-[5] is applied to image edge detection, the influence of noise can be decreased 

and higher precision edges are obtained. This has make wavelets become an important method for 

edge detection. 

From then on, wavelets have been used widely in image processing. Simultaneously, many new 

algorithms are proposed to deal with edge detection based on some special wavelets such as 

omnidirectional wavelet transform[6], B-spline wavelet transform[7], and wavelet transform with 

morpholopy[8] or canny operator[9].  

People have made great progress in application of wavelet to edge detection, but the 

abovementioned methods still have many shortcomings such as complex computation and low 

accuracy. Clearly, it follows from sampling theory that samples can be considered as coefficients of 

interpolation wavelets series [10]-[11]. Since pixels of images can be considered as samples of 

target functions, applications of interpolation wavelets to image processing can greatly improve 

efficiency of wavelet transform. This motivates us to detect image edges based on wavelet sampling 

theory. The work [11] has proposed an algorithm for constructing interpolation filters. Here, with 

aid of this result, a new algorithm is proposed to detect image edges by combining interpolation 

filters and Mallat pyramidal algorithm. In this new algorithm, wavelet coefficients are obtained 

from samples directly instead of inner product formula. Thus edges of images can be detected 

efficiently. 
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The Classical Wavelet Algorithm in Image Edge Detection 

Assume that ( )x  and ( )x  are respectively a scaling function and its corresponding wavelet. 

{ }j jV Z
 forms a multiresolution analysis (MRA) of 2 ( )L R . 

jW  is a wavelet space such that 

1j j jV V W   , where   denotes an orthogonal direct sum. Then for any function 2( ) ( )f x L R , we 

have 

( ) (2 )j j

kk j
f x c x k

 
  Z Z

, (1) 

where { }jk kc Z  are wavelet coefficients such that 

( ), (2 ) ( ) (2 )j j j

k
x

c f x x k f x x k dx 





    .                                                 (2) 

Since multidimensional wavelets can be generated by tensor product of one-dimensional 

wavelets, i.e. 
1 2( , ) ( ) ( )x y x y   , Hence, Eqs. (1) and (2) in two dimensions can be respectively 

expressed as  

 (3) 

and 

,

*

( , ), (2 ,2 )

( , ) (2 ,2 )

j j j

k m

j j

x y

c f x y x k y m

f x y x k y m dxdy




 

 

  

   
. (4) 

Clearly, it follows from edge detection theories that wavelet coefficients play a critical role in 

detecting image edge. Since an digital image is generally represented in form of a matrix in practice, 

the presentation 
*

, ( , ) (2 ,2 )j j j

k m l n l nl n
c f x y x k y m x y       (5) 

is often used to replace (4) for obtaining wavelet coefficients. 

According to the Riemann integral formula 

, (6) 

equation (5) can be a good approximation of (4) for a set of enough dense samples. 

However, with development of image processing, higher resolution of image edge is required in 

application. Equation (5) in fact has had difficulties in obtaining a good approximation. If x  and 

y  in (5) respectively denote the pixel physical intervals of an image acquisition device in 

horizontal and vertical direction, then (5) in the resolution of 2 j  can be expressed as  

1 2
, 1 2

*

1 2

( , )

(2 ,2 )

j
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j j

c f k x k y

k x k k y m x y
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. (7)
 

However, when the resolution is increased to 12 j , we have 

. (8)
 

Suppose 2x x   , 2y y   , then (8) can be represented as 

. (9)
 

On the other hand, it follows from (4) that 
1 * 1 1

,
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Obviously, (7) and (9) are respectively approximations of (4) and (10), which are used to obtain 
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wavelet coefficients at resolution 2 j  and 12 j . Compared (7) to (9), the equivalent sampling 

periods x  and y  in (9) become twice than x  and y  in (7). This implies that higher 

resolution of wavelets in image edge detection can cause larger sampling intervals x  and y  

even if physical sampling intervals x  and y  are unchanged for an image acquisition device.  

On the other hand, it known from Riemann integral theory that increase of x  and y  can lead 

up to a larger calculation error for approximation of (7) to (4). Thus, with resolution improvement 

of image edge detection, the approximation (5) of integral formula (4) cannot produce enough 

accurate wavelet coefficients. Conversely, in order to get accurate wavelet coefficients, the 

resolution of image edge detection is generally limited. Hence, classic integral method has difficulty 

in obtaining results of high resolution in image edge detections. 

To solve the above-mentioned problem, based on Mallat pyramidal algorithm and interpolation 

wavelets, this paper proposes a new method to deal with image edges. Theoretical analysis 

demonstrates that this algorithm can avoid numerical integral formula for obtaining wavelet 

coefficients. Hence a better edge detect result can be obtained.  

The Mallat Pyramidal Algorithm and Interpolation Wavelet 

Classic Two-dimensional Mallat Pyramidal Algorithm  

Assume that 2{ }j jV Z  forms a MRA of 2 2( )L R , and satisfies 2 2 2

1 1j j jV V W   , where  
2

1 1 1

1 1 1 1

( )

( ) ( )

j j j

j j j j

W V W

W V W W

  

   

  

  
. (11) 

Let ( , ) ( ) ( )x y x y    be a scaling function for the approximation space 2

0V . Then 
1

2

3
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                                                                        (12)

  
 

are wavelets corresponding to ( , )x y . This implies that  

, , ,{ ( , ) 2 (2 ,2 )}j j j

j k m k mx y x k y m     Z  (13) 

and 1 2 3

, , , , , , ,{ ( , ), ( , ), ( , )}j k m j k m j k m k mx y x y x y   Z  respectively form Riesz bases of 2

jV  and 2

jW . 

Since 2 2 2

1 1j j jV V W   , there must be the orthogonal projections of 2( , )j jf x y V respectively onto 
2

1 1( , )j jf x y V   and 2

1 1( , )j jr x y W  . Thus ( , )jf x y  can be represented as  

. (14) 

Here 

, (15) 

with , ,{ }j

k m k mc Z , 1,1

, ,{ }j

k m k md 

Z , 1,2

, ,{ }j

k m k md 

Z  and 1,3 2

, ,{ }j

k m k md l

 Z . 

On the other hand, there exists a filter bank ( ( ), ( ))P w Q w  corresponding to scaling function ( )x  

and wavelet ( )x , which satisfies 

ˆ ˆ( ) ( ) ( / 2)

ˆˆ ( ) ( ) ( / 2)

w P w w

w Q w w

 
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
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Their corresponding dual low-pass and high-pass filters are 
/2
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
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where { }k kg Z , 2{ }k kh l Z . Then the two-dimensional Mallat pyramidal algorithm can be expressed 

, , , 1 1,
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as 

 
1

, 2 2 ,

1,1

, 2 2 ,

1,2

, 2 2 ,

1,3

, 2 2 ,

j j

k m l k n m l nl n

j j

k m l k n m l nl n

j j
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j j

k m l k n m l nl n

c g g c
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d h g c
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
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
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

 


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
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
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 
 
 
  . (18) 

From (18), wavelet coefficients ,{ }j

l nc  of an image can be decomposed into four subsets as 
1

,{ }j

k mc  , 1,1

,{ }j

k md  , 1,2

,{ }j

k md  , 1,3

,{ }j

k md  . Since { }k kg Z
 and { }k kh Z

 are low-pass and high-pass filters, 
1,1

,{ }j

k md   describes the vertical edge of an image. Similarly, 1,2

,{ }j

k md   and 1,3

,{ }j

k md   respectively 

describe edges in horizontal and diagonal directions
[1]

. Equation (18) implies that image edges can 

be detected only if the wavelet coefficients ,{ }j

l nc  and filter sequences { }k kg Z
, { }k kh Z

 are 

obtained. 

The Properties of Interpolation Wavelet 

Let ( )S x  and ( )S x  respectively denote the interpolation scaling function and the interpolation 

wavelet. From [11], we have the unique series expressions 
( ) ( / 2 ) (2 )j j

s sk
f x f k S x k


  Z  (19) 

and 

 (20) 

with ( )s jf x V  and ( )s jr x W , jZ . It follows from (19) and (20) that ( )S x  and ( )S x  are 

respectively special scaling function and wavelet with coefficients in terms of { ( / 2 )}j

s kf k Z  and 
1{ ( / 2 1/ 2 )}j j

s kr k 

 Z . 

The properties of interpolation wavelets as in (19) and (20) can be easily extended to 

two-dimensional case. Suppose that ( , ) ( ) ( )S x y S x S y    and  
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3
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respectively denote two-dimensional interpolation scaling function and wavelets in spaces 2

0V  and 
2

0W . According to wavelet theory, , , ,{ ( , )}j k m k mS x y

Z  and 1 2

, , , ,{ ( , ), ( , ),j k m j k mS x y S x y   3

, , ,( , )}j k m k mS x y

Z  

respectively form a Riesz basis in 2

jV  and 2

jW . Thus, we have two-dimensional series expressions 

 (22) 

for any functions 2( , )s jf x y V  and 2( , )s jr x y W . 

Moreover, equations (22) implies that sampling values are interpolation wavelet coefficients. This 

reminds us to decompose images via Mallat pyramidal algorithm. Assume that low-pass and 

high-pass interpolation filters are 
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k kp l Z . Their corresponding dual filters are 
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with { }s

n ng Z
, 2{ }s

n nh l Z
. Clearly pixel values of images are interpolation wavelet coefficients. Hence, 

image edges can be detected even without integral formula as in (4) if Mallat pyramidal algorithm (18) 

is applied to  ( ), ( )s sP w Q w  and  ( ), ( )s sG w H w  as in (13) and (14).  

In the following, we will show how to obtain interpolation filters. From wavelet theory, ( )sP w  

and ( )sQ w  satisfy 

ˆ ˆ( ) ( ) ( / 2)

ˆ ˆ( ) ( ) ( / 2)

s

s

S w P w S w

S w Q w S w

 
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

 , (25) 

where ˆ ( )S w  and ˆ ( )S w  are the Fourier transforms of ( )S x  and ( )S x . It is derived from (25) 

that 
ˆ( ) ( 4 )s k

P w S w k 



  . (26) 

Equation (26) implies that ( )sP w  can be considered as the form of ˆ ( )S w . It is shown in [10] that  
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where ˆ( )w  is the Fourier transform of a scaling function ( )x . Inserting (27) into (26) yields  
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k
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
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 , (28)  

(28) implies that the low-pass filter ( )sP w  can be obtained via scaling function ˆ( )w .  

By [11], the high-pass filter ( )sQ w  can be expressed in terms of ( )sP w  and ( )sE w  as  
/2 ( 2 ) ( 2 )
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( 2 ) ( 2 ) ( ) ( )
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where 
2
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  . (28) and (29) imply that the interpolation filter bank 

 ( ), ( )s sP w Q w  can be constructed only if the scaling function ( )x  is obtained. In addition, from the 

classical wavelet theory, we have 
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Equation (30) has supplied an effective method for constructing the corresponding dual filter bank 

 ( ), ( )s sG w H w  from  ( ), ( )s sP w Q w , which is basic for using Mallat pyramidal algorithm to detect 

image edges. 

Edge detection algorithm based on interpolation wavelet 

Two-dimensional Interpolation Wavelet Decomposition 

In this section, we apply interpolation filters to Mallat pyramidal algorithm, and discuss 

interpolation wavelet decomposition algorithm for images.   

From (22), (15) can be further expressed as 
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      .  (32) 

(32) implies that sampling values of 
1( , )jf x y

 and 
1( , )jr x y

 in their row and column directions can 

be considered as wavelet coefficients, which are crucial for implementing interpolation wavelet 

decomposition algorithm. 

Let ( , )Jf x y  denotes an image. Clearly, ( , )Jf x y  is an energy limited function. According to 

multi-resolution analysis theory, there exists an approximation space { }J j jV V  Z
 such that 

( , )J Jf x y V , where J  is a fixed scale. From sampling theory, image with a size of 
1 2N N  also can 

be expressed as a matrix 
1 2,[ ]map k m N NA a  , where , ( / 2 , / 2 )J J

k m Ja f k m  forms gray value at 

coordinate point ( , )k m . From (32), we have 

, ( / 2 , / 2 )J J J

k m Jc f k m
. (33) 

Equation (33) implies that the pixel matrix mapA  of a digital image can be considered as wavelet 

coefficients ,{ }J

k mc . Thus, the wavelet coefficients of images can be obtained quickly. 

Since the number of pixels is limited, coordinates of the image pixels can be depicted in Fig.1. 
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Fig. 1. Four vertexes of an image 

Hence, from (18) and (32), the interpolation wavelet decomposition algorithm can be expressed as 
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where { }s

n ng Z , { }s

n nh Z  are interpolation dual filters as in (24). Suppose that 

.                                             (35) 

It follows from (34) that the pixel matrix s

Jf  can be decomposed into four coefficients as -1

s

Jf , 

1,1

s

Jr  , 1,2

s

Jr   and 1,3

s

Jr   only if { }s

ng  and { }s

nh  are obtained.  

It follows from wavelet theory that 1

s

Jf   denotes an approximation of image. Simultaneously, 

1,1

s

Jr  , 1,2

s

Jr   and 1,3

s

Jr   respectively form vertical, horizontal and diagonal image edges. By 

recursively applying (34) to 1

s

Jf  , we can get a series of edge images with different resolutions.  
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Edge Detection Algorithm 

Based on the discussions abovementioned, the new edge detection algorithm can be described in the 

following steps. 

Step1: Inserting a scaling function ˆ( )w  into (27) gives an interpolation scaling function ˆ ( )S w . 

Hence, low-pass and high-pass interpolation filter bank  ( ), ( )s sP w Q w  can be constructed from 

ˆ ( )S w  by (26) and (29). From (30), the corresponding dual filter bank  ( ), ( )s sG w H w  can be get via 

 ( ), ( )s sP w Q w , which means filter sequences sg  and sh  are obtained. 

Step2: Setting a scale as J , then inserting the image pixel matrix s

Jf  and the filter bank ( , )s sg h  

into (34) yields decomposition coefficients 1

s

Jf   and 1,1

s

Jr  , 1,2

s

Jr  , 1,3

s

Jr  . 

Step3: If the resolution of image edges from step2 can’t meets our requirements, we can 

recursively decompose 1

s

Jf   until coefficients ,1

s

J Mr  , ,2

s

J Mr  , ,3

s

J Mr   with a desired resolution are 

obtained. 

Step4: Inserting ,1

s

J Mr  , ,2

s

J Mr  , ,3

s

J Mr   into  

2 2 2

,1 ,2 ,3

s s s s

J M J M J M J Md r r r     
, (36) 

we can get a matrix s

J Md   which can reflect integrated edges of an image.  

Step5: Selecting a suitable threshold T , then the edges can be obtained by choosing coefficients in 
s

J Md   are greater than T .  

The above-mentioned process can be shown as Fig.2. 

 
It follows from Fig.2 that our algorithm can get wavelet coefficients directly from image pixels. 

Compared to the classic wavelet algorithm, in which wavelet coefficients have to be obtained via 

integral formulas, our algorithm can detect image edges simply and accurately. 

Experiment Results and Analyses  

In this section, we choose a pears image and a more complex lena image as original images, which 

are shown in Fig. 3. Edge detection results of the sobel operator[6], the classic wavelet algorithm, 

and the multiscale edge detection algorithm in [4] would be compared with result of our algorithm.  

This experiment uses a sixth order spline wavelet for classic wavelet algorithm and our algorithm. 

Edge detection results with 2J    are depicted in Fig.4~5. 

 

 

 

Fig. 2. Flow chart of edge detection algorithm 
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            (a) PEARS 

 
(b) LENA 

Fig. 3. Original images 

As is shown in Fig.4(a), edges detected by sobel operator is clear but not intact. The classic 

wavelet algorithm has detected a blurry edge image (Fig.4(b)) with many discontinuous edges and 

few details. Edges detected by algorithm in [4] (Fig.4(c)) also exist many breakpoints. However, as 

we can see in Fig.4(d), the detect result of our algorithm has a continuous and intact edge image 

with less textures, which is better than three algorithms above.  

 

             
(a) Sobel edge detector      (b) Classic wavelet algorithm        (c) Algorithm in [4]             (d) Our algorithm 

Fig. 4. Detect results of PEARS 

When detect a more complex lena image, from Figure 5(a)~(c), we can see that lots of 

discontinuous edges are detected by the sobel operator. Simultaneously, the classic wavelet 

algorithm and the algorithm in [4] also have poor results when it comes to edges with lower contrast. 

Both of three algorithms can only obtain a crude outline, and have difficulties in detecting 

complicated details. But as is shown in Fig.5(d), the edge image detected by our algorithm has 

accurate locations and clear descriptions of hair and decorations on the hat. Furthermore, details of 

eyes and nose also can be preserved well in the result of our algorithm. 

 

                         
(a) Sobel edge detector      (b) Classic wavelet algorithm        (c) Algorithm in [4]             (d) Our algorithm 

Fig. 5. Detect results of LENA 

From the theoretical analysis abovementioned, we know that in classic wavelet algorithm, there 

is a contradiction between the resolution of image edge detection and the solving accuracy of 

wavelet coefficients. This leads up to the unsatisfactory edge detection result. In our algorithm, 

since wavelet coefficients are obtained via interpolation wavelet decomposition, this method 

overcomes the influence of integral formula in classic wavelet algorithm. Experimental results as 

shown in Fig. 4 and Fig. 5 fully verify the effectiveness of our algorithm.  

Conclusion  

This paper proposed a new edge detection algorithm based on interpolation wavelet pyramid 

decomposition. This has solved the problem that the classic wavelet algorithm generally cannot 

obtain precise wavelet coefficients and fine resolution at the same time. The experimental results 
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demonstrate that the new algorithm has a stronger detection capacity of details and improves the 

location accuracy. Thus a better edge result can be obtained. 
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