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Abstract

The probabilistic linguistic term sets (PLTSs) are powerful to deal with the hesitant linguistic situation
in which each provided linguistic term has a probability. The PLTSs contain uncertainties caused by the
linguistic terms and their probability information. In order to measure such uncertainties, three entropy
measures are proposed: the fuzzy entropy, the hesitant entropy, and the total entropy. The fuzzy entropy
measures the fuzziness of the PLTSs, and the hesitant entropy measures the hesitation of the PLTSs. To
facilitate the computation of all uncertainties contained in the PLTSs, the total entropy is proposed. Some
properties and some formulas of the entropy measures are introduced. A multi-criteria decision making
model based on the PLTSs is introduced by using the proposed entropy measures. An illustrative example
is provided and the comparison analysis with the existing method is given.
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1. Introduction

Fuzzy sets (FSs)32 have provided great convenience
in modeling uncertainties, and have been applied
successfully to many fields. Many extensions of
FSs were introduced, such as the intuitionistic fuzzy
sets1,28, the hesitant fuzzy sets (HFSs)17,18, the dual
HFSs36, and the hesitant fuzzy linguistic term sets
(HFLTSs)15. The HFSs facilitate decision mak-
ers when they are hesitant on providing prefer-
ences, which permit multi-valued membership de-
grees. Under linguistic environment, Rodı́guez and

Martı́nez14 provided an overview on the relation-
ship of the process of computing with words and
the decision making. Rodı́guez et al.13 justified the
use of HFLTSs in complex linguistic context. The
HFLTSs can similarly permit decision makers to ex-
press their qualitative assessments by using several
linguistic terms, and they are generally transformed
from comparative linguistic expressions close to hu-
man’s cognitive process. In order to overcome the
limitation of the HFLTSs whose linguistic terms are
consecutive, the extended HFLTSs (EHFLTSs)19,22

were introduced, whose linguistic terms may be val-
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ued as any term in a linguistic term set. The lin-
guistic terms in the HFLTSs and the EHFLTSs are
generally viewed as equally important since no ad-
ditional information can be obtained from them di-
rectly. Liu and Rodı́guez9 introduced the fuzzy en-
velope for HFLTSs to embody the different impor-
tance degrees of the linguistic terms in the HFLTSs
from an intuitive viewpoint. Zhang et al.33 intro-
duced the possibility distribution assessments based
on the expression form of discrete FSs. Such an
expression extended the proportional linguistic 2-
tuple20 to a more general form, and provided the
symbolic proportion of each linguistic term in a lin-
guistic term set, which can be viewed as the original
idea of the PLTSs. There are also some research re-
sults on the hesitant fuzzy preference relations25,26

and the application of the HFLTSs27.

Recently, Pang et al.12 introduced the probabilis-
tic linguistic term sets (PLTSs) which are composed
of the EHFLTSs with each linguistic term having a
probability indicating its frequency in group deci-
sion making, or the importance of the term, or the
degree of belief on that linguistic term expressed
by a decision maker. The PLTSs had been inves-
tigated from different viewpoints. Bai et al.2 in-
troduced a new comparison method for the PLTSs.
Gou and Xu7 proposed some novel operational laws
for the linguistic terms, the HFLTSs and the PLTSs.
Zhang et al.34 discussed the additive consistency of
probabilistic linguistic preference relations based on
graph theory. The similar case of the PLTSs in quan-
titative context was also investigated, and the proba-
bilistic HFSs (PHFSs)30 were introduced, which im-
port probability information to the HFSs. In Ref.30,
it was also introduced a consensus building model
based on the maximizing score deviation model and
aggregation operators for PHFSs. The probabilis-
tic dual HFSs8 were introduced to deal with the risk
evaluation problems.

Entropy was originally used to measure the un-
certainty contained in a probability distribution.
Later on, it was extended to measure the fuzziness
contained in a fuzzy set4,10. Pal and Bezdek11 gave
a comprehensive review of the entropy of FSs and
the methods to combine the fuzziness and prob-
ability information of FSs. Under hesitant fuzzy

environment, different forms of entropy were pro-
posed. Xu and Xia29 introduced the entropy and
cross-entropy for HFSs, and applied the entropy to
TOPSIS method in multi-attribute decision making.
Farhadinia5 further developed some distance-based
entropy measures. Wei et al.21 introduced some new
entropy measures which combined both the score
function and the deviation function of HFSs into a
unified form, and utilized the entropy to compute the
criteria weights in multi-criteria decision making.
Zhao et al.35 introduced the two tuple entropy which
considers both the fuzziness and the nonspecificity
of the HFSs.

All of the above entropy measures are suit-
able for HFSs which have no probability infor-
mation. New entropy measures should be de-
veloped since the probability information in the
PLTSs cannot be omitted. Let us consider two
PLTSs: L(P)(1) = {s1(0.5),s2(0.5)} and L(P)(2) =
{s1(0.01),s2(0.99)} based on a linguistic term set
S = {s0, . . . ,s8}. From an intuitive viewpoint it can
be seen that they contain different degrees of un-
certainty although the linguistic terms used in them
are identical. The first PLTS is totally hesitant since
both probabilities of the linguistic terms are 0.5, and
the second one contains less hesitation since s2 plays
an important role because of its high probability and
as a result the PLTS behaves like the single linguis-
tic term s2. In this situation, an entropy represent-
ing the uncertainties contained in the PLTSs should
embody the differences on probability information.
In PLTSs, the probability represents the randomness
of the appearance of the linguistic terms. Each lin-
guistic term in a PLTS represents a certain degree of
fuzziness and multiple linguistic terms in the PLTS
represent a certain degree of hesitation if the PLTS
contains two or more linguistic terms. To consider
all of the uncertainties including probability, fuzzi-
ness, and hesitation of a PLTS, and motivated by
Refs.21,24,29,35, we propose some new entropy mea-
sures which can deal with all of the above uncer-
tainties contained in the PLTSs. We then apply the
entropy measures to determine the criteria weights
and further develop a multi-criteria decision making
model based on the fuzzy TOPSIS method.

The remainder of this paper is organized as fol-
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lows: Section 2 reviews the PLTSs and entropy
measures of HFSs, Section 3 introduces the entropy
measures for PLTSs, Section 4 introduces a multi-
criteria decision making model, Section 5 presents
an illustrative example and Section 6 concludes the
whole paper.

2. Preliminaries

In this section, some basic concepts including the
PLTSs and the entropy measures of HFSs are re-
viewed.

2.1. PLTSs

The PLTSs are defined by considering probability
information in EHFLTSs.

Definition 1. 12 Let S = {s0,s1, . . . ,sg} be a linguis-
tic term set, a PLTS is defined as:

L(P) ={
li(pi)|li ∈ S, pi > 0, i = 1, . . . ,#L(P),

#L(P)

∑
i=1

pi 6 1

}
.

Note that if ∑#L(P)
i=1 pi = 1, then the PLTS is pro-

vided with complete information, and if ∑#L(P)
i=1 pi <

1, then only partial probability information is
known. In order to make the summation of the prob-
abilities to be one, a normalization process is done
by using the following formula:

L(P′) =
{

li(p′i)|li ∈ S, i = 1, . . . ,#L(P)
}
,

where p′i = pi/
(

∑#L(P)
i=1 pi

)
.

In such a way a normalized PLTS is obtained.
The set of normalized PLTSs is denoted as L(P).

For a PLTS L(P) ∈ L(P), the expectation
was computed as E(L(P)) = sα , where α =

∑#L(P)
i=1 piI(li), and I(·) denotes the subscript of the

linguistic term. Some operations of PLTSs were also
defined in Refs.7,12. We only use the complement of
a PLTS as follows:

(L(P))c = {(sg − li)(pi)|i = 1, . . . ,#L(P)} .

The distance between two PLTSs was defined
based on the distance between each element of the
PLTSs, which requires that the number of elements
of the two PLTSs to be equal. The method in Ref.12

adds the smallest linguistic term in the shorter PLTS
with the probability 0 several times until the shorter
PLTS has the same number of elements as the longer
PLTS. To avoid the complexity of computation, we
propose a new distance between two PLTSs based
on the expectation.

Definition 2. Let L(P)(l), l = 1,2 be two PLTSs, the
distance between them is defined as:

d
(

L(P)(1),L(P)(2)
)
=

∣∣E (L(P)(1))−E(L(P)(2)
)∣∣

g
.

(1)

2.2. Entropy measures of HFSs

An important issue of the HFS is the measurement of
the information contained in it. The commonly-used
measure is entropy. Different forms of entropy mea-
sures have been proposed for HFSs. Here we mainly
review the two tuple entropy which is composed of
the fuzziness and nonspecificity of the HFSs.

Definition 3. 35 Let H be the set of HFSs, and
EF ,ENS : H → [0,1] be two functions, the pair
(EF ,ENS) is called a two tuple entropy, if it satisfies
the following conditions:

(i) EF(α) = 0 if and only if α = {0} or α = {1};

(ii) EF(α) = 1 if and only if α = {0.5};

(iii) EF(α) 6 EF(β ), if ασ(i) 6 βσ(i) 6 0.5, or
ασ(i) > βσi > 0.5, #α = #β , i = 1, . . . ,#α;

(iv) EF(α) = EF(αc), where αc is the complement
of α , which is expressed as αc =

∪
αi∈α{1−

αi};

(v) ENS(α) = 0 if and only if there is only one el-
ement contained in α;

(vi) ENS(α) = 1 if and only if α = {0,1};

(vii) ENS(α) 6 ENS(β ) if |ασ(i)−ασ( j)| 6 |βσ(i)−
βσ( j)| for #α = #β , i = 1, . . . ,#α;
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(viii) ENS(α) = ENS(αc).

The fuzziness and nonspecificity EF ,ENS can be
called the fuzzy entropy and hesitant entropy respec-
tively.

3. Entropy measures of the PLTSs

In this section, the fuzzy entropy and hesitant en-
tropy of the PLTSs are introduced, then the total en-
tropy is proposed to combine the two entropy mea-
sures.

3.1. The fuzzy entropy of the PLTSs

For any linguistic term li ∈ S, it is easy to transfer
the term into a value in [0,1] by using αi = I(li)/g.
Since the fuzzy entropy of HFSs can be applied for
one value αi ∈ [0,1], we propose the fuzzy entropy
of the PLTSs by considering fuzzy entropy of the
linguistic terms and the probability information in
the PLTSs.

Definition 4. Let L(P) = {li(pi)|i = 1, . . . ,#L(P)} ∈
L(P) be a PLTS, and αi = I(li)/g, i = 1, . . . ,#L(P).
The fuzzy entropy of the PLTSs is defined as

EF(L(P)) =
#L(P)

∑
i=1

pi ·EF(αi), (2)

where EF is the fuzzy entropy of the HFSs defined
in Definition 3.

Let us give some properties of the fuzzy entropy
of the PLTSs.

Proposition 1. The fuzzy entropy defined in the Def-
inition 4 has the following properties:

(i) EF(s0(1)) = EF(sg(1)) = 0, and further
EF ({s0(p),sg(1− p)}) = 0;

(ii) EF(sg/2(1)) = 1;

(iii) EF(L(P)(1)) 6 EF(L(P)(2)) if l(1)i 6 l(2)i 6
sg/2, or l(1)i > l(2)i > sg/2, and P(1) = P(2),
#L(P)(1) = #L(P)(2), i = 1, . . . ,#L(P)(1);

(iv) EF(L(P)) = EF(L(P)c).

Proof.

(i) Since α0 = I(s0)/g = 0, αg = I(sg)/g = 1, and
EF(0) = EF(1) = 0, thus we have EF(s0(1)) =
1 · EF(0) = 0, EF(sg(1)) = 1 · EF(1) = 0,
and EF ({s0(p),sg(1− p)}) = p ·EF(0)+(1−
p)EF(1) = 0;

(ii) Since αg/2 = 0.5, EF(0.5) = 1, we obtain that
EF(sg/2(1)) = 1 ·1 = 1;

(iii) If l(1)i 6 l(2)i 6 sg/2, then α(1)
i 6 α(2)

i 6
0.5. From the property of EF , we have
p(1)i · EF(α

(1)
i ) 6 p(2)i · EF(α

(2)
i ), and thus

EF(L(P)(1)) 6 EF(L(P)(2)). The proof of the
case l(1)i > l(2)i > sg/2 is similar;

(iv) Since L(P)c = {(sg − li)(pi)|i = 1, . . . ,#L(P)},
and EF(α) = EF(αc), the conclusion
EF(L(P)) = EF(L(P)c) follows naturally.

From the Proposition 1, we can obtain the fol-
lowing property.

Proposition 2. The proposed fuzzy entropy in Defi-
nition 4 coincides with the entropy measure defined
in Ref.6 and Ref.23 if pi = 1/(#L(P)).

Proof. The proof is divided into two parts.

(i) It is noted that the linguistic term set used here,
S = {s0, . . . ,sg}, is different from the one used
in Ref.6, that is, S′ = {s′−τ , . . . ,s

′
τ}. But they

are essentially identical by setting

µ(li) =
2τ
g

li − τ ,

for li ∈ S, and then we have µ(li)∈ S′. We need
to prove that EF(L(P)) in Definition 4 satisfies
the conditions of the entropy measure in Ref.6

if pi = 1/(#L(P)). Actually it only needs to
prove that 0 6 EF(L(P))6 1 since

EF(L(P)) =
1

#L(P)

#L(P)

∑
i=1

EF(αi),

and 0 6 EF(αi) 6 1. The left conditions are
the same as in Proposition 1. Thus the result
holds.
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(ii) Similarly, we can transform the linguistic term
set S = {s0, . . . ,sg} in our proposal to the one
used in Ref.23, that is, S′′ = {s′′0, . . . ,s

′′
g}, by

setting ν(li) = li/2, for li ∈ S, and we have
ν(li) ∈ S′′. The proof of the EF(L(P)) satis-
fying the left conditions is straightforward and
it is omitted here.

From the above properties, we know that the
HFLTSs and the EHFLTSs can be viewed as the
special cases of the PLTSs. In a HFLTS HS or
an EHFLTS EHS, there are no probability informa-
tion is provided and thus the linguistic terms can
be viewed as equally important. If we impose a
probability pi to each term li ∈ HS or EHS, then
pi = 1/(#HS) or 1/(#EHS). In this sense, the fuzzy
entropy of the PLTSs are more general than the en-
tropy of the HFLTS and the EHFLTSs.

Intuitively, the fuzzy entropy of a LPTS mea-
sures the amount of fuzziness contained in it.
For an element li(pi) ∈ L(P) = {li(pi)|li ∈ S, i =
1,2, . . . ,#L(P)}, the fuzziness contained in li(pi)
is composed of two parts, one is the fuzziness of
li, the other is the probability pi. We explain this
point by presenting a practical example. Let us con-
sider the safety evaluation of a car based on a lin-
guistic term set S = {s0 : extremely bad, . . . ,sg/2 :
medium, . . . ,sg : extremely bad}. If li = s0, pi = 1,
then the safety of the car is extremely bad, and the
decision may be “not to buy”. If li = sg, pi = 1, then
the decision may be “buy” since the safety of the car
is extremely good. If li = sg/2, pi = 1, then the deci-
sion may be hesitant between “buy” and “not to buy”
since the safety lies in the margin of good and bad.
This case shows that the linguistic term li may bring
some fuzziness. On the other hand, if pi = 0, then
li will not appear, and if pi = 1, then li will appear
and the fuzziness of li(pi) is solely determined by li.
If 0 < pi < 1, then li may appear or not, and since li
contains fuzziness itself, the fuzziness of li(pi) is de-
termined by pi and li collectively. By summarizing
the fuzziness of all elements in L(P), we can obtain
the fuzziness, i.e., the fuzzy entropy of L(P).

For an element li0(pi0) ∈ L(P), if pi0 → 1, then
p j → 0, j ̸= i0 and EF(L(P))→ EF(αi0), which in-
dicates that li0(pi0) plays an important role in de-

termining the fuzzy entropy of L(P). Similarly, if
pi0 → 0, then pi0 ·EF(αi0)→ 0, which means that the
importance of li0(pi0) is almost negligible in L(P).
These results are consistent with the intuition that
the linguistic terms with low probability are less im-
portant than the terms with high probability in a
PLTS.

The expression of EF depends on the form of EF .
In Ref.11, it was given some formulas of entropy,
based on which, we propose the following fuzzy en-
tropy measures of PLTSs:

(i). E1
F(L(P))

=− 1
ln2

#L(P)

∑
i=1

pi [αi lnαi +(1−αi) ln(1−αi)] ; (3)

(ii). E2
F(L(P))

= 2

(
#L(P)

∑
i=1

(pi min{αi,1−αi})q

) 1
q

,q > 1; (4)

(iii). E3
F(L(P))

=
1√

e−1

(
#L(P)

∑
i=1

pi
[
αie1−αi +(1−αi)eαi −1

])
; (5)

(iv). E4
F(L(P)) = 1−

#L(P)

∑
i=1

pi|1−2αi|; (6)

(v). E5
F(L(P))

=
1

(1−q) ln2

#L(P)

∑
i=1

pi ln
[
αq

i +(1−αi)
q] , (7)

q > 0,q ̸= 1;

(vi). E6
F(L(P))

= 4q
#L(P)

∑
i=1

piαq
i (1−αi)

q,0 < q < 1. (8)

The properties of EF were deeply investigated
and for more details we refer to Ref.11.

It is interesting that a new entropy can be con-
structed as a function of some known entropy
measures6. Motivated by this idea, we can construct
a new fuzzy entropy in the following form:

EF(L(P)) = Φ(E1
F(L(P)), . . . ,E

k
F(L(P))), (9)

where Φ is monotone non-decreasing, and
Φ(0, . . . ,0) = 0, and Φ(1, . . . ,1) = 1, and
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E i
F(L(P)), i = 1, . . . ,k are fuzzy entropy measures

of L(P).
Based on this idea, a special fuzzy entropy can

be obtained as a convex combination of the afore-
mentioned six fuzzy entropy measures, that is,

EF(L(P)) =
6

∑
i=1

λiE
i
F(L(P)), (10)

where λi ∈ [0,1], i = 1, . . . ,6, and ∑6
i=1 λi = 1. Es-

pecially, if λi = 1/6, i = 1, . . . ,6, then the convex
combination reduces to the arithmetic mean of the
six types of the fuzzy entropy, which can minimize
the absolute deviation of the six fuzzy entropy mea-
sures.

To illustrate the computational process of the
fuzzy entropy, we provide an example as follows:

Example 1. Let S = {s0,s1, . . . ,s8} be a linguistic
term set, and

L(P)(1) = {s3(0.4),s4(0.6)},
L(P)(2) = {s2(0.5),s4(0.5)},
L(P)(3) = {s2(0.25),s3(0.5),s4(0.25)},

be three normalized PLTSs. For simplicity, we set
the parameters in the fuzzy entropy measures as:
q = 1 in E2

F , q = 1/2 in E5
F ,E

6
F . The results of the

fuzzy entropy measures and the arithmetic mean of
them are shown as in Table 1.

Table 1. The computation results of the fuzzy entropy.

L(P)(1) L(P)(2) L(P)(3)

E1
F 0.9818 0.9056 0.9300

E2
F 0.9000 0.7500 0.7500

E3
F 0.9761 0.8794 0.9098

E4
F 0.9000 0.7500 0.7500

E5
F 0.9980 0.9500 0.9634

E6
F 0.9873 0.9330 0.9506

EF 0.9600 0.8613 0.8757

From the results, we can see that except for E2
F

and E4
F , the other fuzzy entropy measures produce

the same ranking as

E l
F

(
L(P)(1)

)
> E l

F

(
L(P)(3)

)
> E l

F

(
L(P)(2)

)

for l = 1,3,5,6.
The arithmetic mean of all the entropy measures

also produce the same ranking. If q = 1 in E2
F , then

the entropy measures E2
F and E4

F produce the same
ranking, that is, for l = 2,4,

E l
F

(
L(P)(1)

)
> E l

F

(
L(P)(2)

)
= E l

F

(
L(P)(3)

)
.

Thus they cannot discriminate L(P)(2) and L(P)(3).
Let us investigate E2

F in detail. To clarify the in-
fluence of the parameter q in E2

F , we give the func-
tion of E2

F
(
L(P)(l)

)
with respect to q, l = 1,2,3 as

shown in Figure 1.

Fig. 1. The functions of E2
F

(
L(P)(l)

)
, l = 1,2,3.

If q > 1 in E2
F , then

E2
F

(
L(P)(1)

)
> E2

F

(
L(P)(2)

)
> E2

F

(
L(P)(3)

)
.

The result is not the same as most of the other en-
tropy measures. This can be proved in a brief way.

Actually, if a > b > 0, we have

(aq +bq)1/q → a,q →+∞.

Therefore, if q →+∞, then

E2
F

(
L(P)(l)

)
→max

i

(
p(l)i min{α(l)

i ,1−α(l)
i }
)

.
= β (l).

It can be obtained that β (1) = 0.6, β (2) = 0.5, β (3) =
0.375, and β (1) > β (2) > β (3), and thus

E2
F

(
L(P)(1)

)
> E2

F

(
L(P)(2)

)
> E2

F

(
L(P)(3)

)
.

All of the above results can be seen from Fig. 1.
From the example, we can see that sometimes the

computational results of the fuzzy entropy measures
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are not consistent. To avoid this drawback we rec-
ommend the use of the convex combination of such
fuzzy entropy measures.

In the more general cases, Pal and Bezdek11 de-
fined the multiplicative and additive classes of en-
tropy measures. Here we review them briefly.

Let f : [0,1] → R+ be a function satisfy-
ing f ′(x) > 0, f ′′(x) < 0, and ĝ(x) = f (x) f (1 −
x), ĥ(x) = f (x) + f (1 − x), and g(x) = ĝ(x) −
min

06x61
{ĝ(x)}, h(x) = ĥ(x)− min

06x61
{ĥ(x)}. Then the

two entropy measures H1 = K1
n
∑

i=1
g(µi) and H2 =

K2
n
∑

i=1
h(µi) satisfy the conditions of the fuzziness in

Definition 3.
Based on these results, we can obtain a new class

of fuzzy entropy of the PLTSs. Let

ϕ̂(x) = λ ĝ(x)+(1−λ )ĥ(x)
= λ f (x) f (1− x)+(1−λ )( f (x)+ f (1− x)) (11)

where λ ∈ [0,1], and

ϕ(x) =
ϕ̂(x)− min

06x61
ϕ̂(x)

max
06x61

ϕ̂(x)− min
06x61

ϕ̂(x)
, (12)

then

EF(L(P)) =
#L(P)

∑
i=1

pi ·ϕ(αi) (13)

is a fuzzy entropy of the PLTSs. The proof of the
property is trivial since the function ϕ̂(x) is a convex
combination of the functions ĝ(x) and ĥ(x), and thus
they share the similar properties. By setting differ-
ent forms of the function f , we can obtain different
fuzzy entropy measures of the PLTSs.

3.2. The hesitant entropy of the PLTSs

The hesitant entropy defined in Definition 3 cannot
consider the probability information in the PLTSs.
Therefore, in the following we redefine the hesitant
entropy for PLTSs which can deal with the probabil-
ity and the hesitation contained in the PLTSs.

Definition 5. Let L(P) = {li(pi)|i = 1, . . . ,#L(P)} ∈
L(P) be a PLTS, and γi j = |αi − α j|, i, j =

1, . . . ,#L(P). The function EH : L(P) → [0,1] is
called the hesitant entropy of the PLTSs if it satis-
fies the following conditions:

(i) EH(L(P)) = 0 if and only if L(P) = {l1(1)},
that is, L(P) only contains one element;

(ii) If L(P) = {l1(p1), l2(p2)}, and p1 → 1, p2 →
0, then EH(L(P))→ 0;

(iii) EH(L(P)) = 1 if and only if L(P) =
{s0(0.5),sg(0.5)};

(iv) EH
(
L(P)(1)

)
6 EH

(
L(P)(2)

)
, if #L(P)(1) =

#L(P)(2),P(1) = P(2), and γ(1)i j 6 γ(2)i j ;

(v) If L(P) = {l1(p1), l2(p2)}, and γ12 → 0, then
EH(L(P))→ 0;

(vi) EH(L(P)) = EH(L(P)c).

By considering the above conditions, we can give
the hesitant entropy of the PLTSs as:

EH(L(P))=


#L(P)

∑
i=1

#L(P)
∑

j=i+1
4pi p j · f (γi j), #L(P)> 2;

0, #L(P) = 1,
(14)

where f : [0,1]→ [0,1] is strictly monotone increas-
ing, that is, f (0) = 0, f (1) = 1.

The hesitant entropy measures the deviation of
the linguistic terms in the LPTS and also consid-
ers the probability information of such terms. For
li(pi), l j(p j) ∈ L(P), i ̸= j, the bigger the deviation
of li and l j, i.e., the value of γi j, the bigger the hes-
itancy contained in L(P). On the other hand, the
biggest hesitancy achieves when pi = p j, since in
this case li, l j have the same probability to appear-
ance. Adding the hesitancy of any pairs in L(P) we
can obtain the overall hesitancy, i.e., the hesitant en-
tropy of L(P).

In the following we prove that the EH(L(P)) ex-
pressed by the Eq. (14) meets the requirements in
Def. 5.

Proposition 3. The EH(L(P)) expressed by the Eq.
(14) is a hesitant entropy.

Proof. It only needs to prove that the EH(L(P))
satisfies the following conditions:
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(i) If L(P) = {l1(1)}, then it is obvious that
EH(L(P)) = 0.

By using reduction to absurdity, we assume
that there exist at least two different elements
l1(p1), l2(p2) ∈ L(P), and EH(L(P)) = 0. In
this case, EH(L(P)) > 4p1 p2 f (γ12). There-
fore, we can obtain that p1 = 0 or p2 = 0, or
f (γ12) = 0. As a result, one element does not
exist or the two elements are identical, which
contradicts the assumption. Thus EH(L(P)) =
0 leads to the conclusion that L(P) = {l1(1)}.

EH(L(P)) = 0 if and only if L(P) = {l1(1)},
that is, L(P) only contains one element;

(ii) If L(P) = {l1(p1), l2(p2)}, and p1 → 1, p2 →
0, then EH(L(P)) = 4p1 p2 f (γ12)→ 0;

(iii) If L(P) = {s0(0.5),sg(0.5)}, then EH(L(P)) =
4 · 0.5 · 0.5 · 1 = 1. If EH(L(P)) =
4p1 p2 f (γ12) = 1, then we have 4p1 p2 f (γ12)6
4p1 p2 6 4(p1 + p2)

2/2 6 1, and the equa-
tion holds when p1 = p2 = 0.5, and we have
f (γ12) = 1 which leads to the conclusion that
γ12 = 1. Therefore L(P) = {s0(0.5),sg(0.5)};

(iv) The conclusion follows naturally because of
the monotonicity of the function f and the as-
sumption that P(1) = P(2);

(v) If L(P) = {l1(p1), l2(p2)}, and γ12 → 0, then
EH(L(P)) = 4p1 p2 f (γ12)→ 0;

(vi) We assume that γc
i j = (g− I(li))/g, then |αi −

α j|= |αc
i −αc

j |, i.e., γi j = γc
i j, and thus f (γi j)=

f (γc
i j). On the other hand, L(P) and L(P)c have

the same probability information, we have
EH(L(P)) = EH(L(P)c).

Proposition 4. The proposed hesitant entropy in
Definition 5 coincides with the hesitant entropy de-
fined in Ref.23 if pi = 1/(#L(P)).

Proof. If pi = 1/(#L(P)), then

EH(L(P)) =


#L(P)

∑
i=1

#L(P)
∑

j=i+1

4 f (γi j)

(#L(P))2 , #L(P)> 2;

0, #L(P) = 1

From Definition 5 we know that EH(L(P)) satisfies
the conditions of the fuzzy entropy in Ref.23.

The regular increasing monotone (RIM)
function31 used in the calculation of OWA weights
satisfies the requirements of hesitant entropy. There
are actually numerous such functions can be found
in the literature. In the following we only give sev-
eral simple examples:

(i). f 1(x) = xr,r > 0; (15)

(ii). f 2(x) = sin
πx
2

; (16)

(iii). f 3(x) = 1− cos
πx
2

; (17)

(iv). f 4(x) =
ln(1+ x)

ln2
; (18)

(v). f 5(x) =
ax −1
a−1

,a > 0,a ̸= 1; (19)

(vi). f 6(x) =
2x

x+1
. (20)

The hesitant entropy measures of PLTSs gen-
erated from f l(x) are denoted as E l

H(L(P)), l =
1, . . . ,6.

In the similar way as the fuzzy entropy, a new
class of hesitant entropy can be constructed by us-
ing the convex combination of the above examples,
that is,

EH(L(P)) =
6

∑
i=1

λiE
i
H(L(P)), (21)

where λi ∈ [0,1], i = 1, . . . ,6,∑6
i=1 λi = 1. Also we

can obtain the arithmetic mean of the hesitant en-
tropy measures when λi = 1/6, i = 1, . . . ,6.

To demonstrate the behavior of the hesitant en-
tropy, we present a numerical example.

Example 2. Let L(P)(l), l = 1,2,3 be the same as
in Example 1. Set r = 1 in E1

H(L(P)), and a = 2
in E5

H(L(P)). We calculate their hesitant entropy by
using the six forms and their arithmetic mean. The
results are shown in Table 2.
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Table 2. The computation results of the fuzzy entropy.

L(P)(1) L(P)(2) L(P)(3)

E1
H 0.1200 0.2500 0.1875

E2
H 0.1873 0.3827 0.2908

E3
H 0.0184 0.0761 0.0382

E4
H 0.1631 0.3219 0.2504

E5
H 0.0869 0.1892 0.1378

E6
H 0.2133 0.4000 0.3222

EH 0.1305 0.2700 0.2045

From the results, we can see that all the hesitant
entropy measures produce the same ranking as

E l
H

(
L(P)(2)

)
> E l

H

(
L(P)(3)

)
> E l

H

(
L(P)(1)

)
,

for l = 1, . . . ,6, and thus, the arithmetic mean of
them also obtains the same ranking. In this view,
any one of the hesitant entropy measures is suitable
for PLTSs. But the relative differences in values are
obviously distinct and here we think that the convex
combination may be more suitable.

Additionally, the hesitant entropy of L(P)(2) is
greater than L(P)(1) since it has more hesitation both
in linguistic terms and the probability. The hesitant
entropy of L(P)(2) is greater than L(P)(3) since it is
totally hesitant on s2 and s4, while L(P)(3) is not so
hesitant since s3 plays a major role because of its
high probability and s2 and s4 influence the hesita-
tion to a less content. The reason that the hesitant en-
tropy of L(P)(3) is greater than L(P)(1) seems to be
very obvious since it contains more hesitation both
on the linguistic terms and the probability. These
observations fit well with our intuition.

3.3. The total entropy of PLTSs

The fuzzy entropy and hesitant entropy measure the
fuzziness and hesitation contained in PLTSs respec-
tively. They reflect different uncertain information
of the PLTSs but they determine the total uncertain-
ties contained in the PLTSs collectively. In this sec-
tion, we develop a total entropy of PLTSs which
combines the fuzzy entropy and the hesitant entropy
in a unified form. Compared with the two tuple
entropy35, such a form will facilitate the computa-
tion of the entropy.

Definition 6. Let L(P)∈ L(P) be a PLTS. The func-
tion ET : L(P) → [0,1] is called the total entropy if
it satisfies the following conditions:

(i) ET (L(P)) = 0 if and only if L(P) = {s0(1)} or
L(P) = {sg(1)};

(ii) ET (L(P)) = 1 if and only if L(P) = {sg/2(1)}
or L(P) = {s0(0.5),sg(0.5)};

(iii) ET
(
L(P)(1)

)
6 ET

(
L(P)(2)

)
, if EF

(
L(P)(1)

)
6 EF

(
L(P)(2)

)
, and EH

(
L(P)(1)

)
6

EH
(
L(P)(2)

)
;

(iv) ET (L(P)) = ET (L(P)c).

Proposition 5. The proposed total entropy in Def-
inition 5 coincides with the total entropy defined in
Ref.23 if pi = 1/(#L(P)).

Proof. If pi = 1/(#L(P)), then the PLTS L(P) can
be viewed as an EHFLTS in which the linguistic
terms are retained and the probabilities are deleted.
We prove the EH(L(P)) satisfies the conditions of
the total entropy in Ref.23.

(i) It is obvious that ET (L(P)) = 0 if and only if
L(P) = {s0(1)} or L(P) = {sg(1)};

(ii) If L(P) = {sg/2(1)}, then ET (L(P)) = 0;

(iii) Suppose that L(P)(k) = {l(k)i (p(k)i )|i =

1, . . . ,#L(P)(k)},k = 1,2. If |l(1)i − sg/2| >
|l(2)i − sg/2|, and γ(1)i j 6 γ(2)st , for i < j,s < t,
i, j = 1, . . . ,#L(P)(k), s, t = 1, . . . ,#L(P)(2),
then EF(L(P)(1)) 6 EF(L(P)(2)), and
EH(L(P)(1)) 6 EH(L(P)(2)), and thus
ET (L(P)(1))6 ET (L(P)(2)).

(iv) It is obvious that ET (L(P)) = ET (L(P)c).

This completes the proof.

From the above property, we know that the total
entropy introduced here is more general than the one
in Ref.23 since the probability of each linguistic term
may not be equal. Additionally, the total entropy in-
troduced here has more desirable properties than the
one in Ref.23 regarding the probability information.
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By considering the conditions in Definition 6,
and the properties of the fuzzy entropy and the hes-
itant entropy, we can construct the total entropy
as ET (L(P)) = ψ

(
EF(L(P)),EH(L(P))

)
, where ψ :

[0,1]× [0,1] → [0,1]. Note that the fuzzy entropy
and the hesitant entropy can be viewed as two paral-
lel concepts for PLTSs, thus they are commutative in
the definition of the total entropy. Considering this
notice and the properties of the fuzzy entropy and
the hesitant entropy, the conditions in Definition 6
reduce to the following properties of the function ψ:

(i) ψ(0,0) = 0;

(ii) ψ(1,0) = ψ(0,1) = 1;

(iii) ψ(x,y) = ψ(y,x);

(iv) ψ(x,y) is monotone increasing with respect to
x and y.

Since the fuzzy entropy and the hesitant entropy
of PLTSs are invariant with respect to a PLTS and
its complement, the last requirement of the total en-
tropy means that ψ(x,y) = ψ(x,y), which is triv-
ial. Additionally, if one of the fuzzy entropy and
the hesitant entropy approaches 0, then the total en-
tropy will approach the other entropy. That is to say,
ψ(x,y)→ x if y → 0, and ψ(x,y)→ y if x → 0.

Let us consider a special case that EF(L(P)) →
1, EH(L(P))→ 1. For the simple case that L(P) =
{l1(p1), l2(p2)}, we have

EF(L(P)) = p1EF(α1)+ p2EF(α2)→ 1.

Since p1 + p2 = 1, then we know that
EF(α1),EF(α2) → 1, and thus l1, l2 → sg/2. On
the other hand, since EH(L(P)) = 4p1 p2 f (γ12)→ 1,
we have p1, p2 → 0.5, and f (γ12) → 1, thus l1 →
s0, l2 → sg, which contradicts with l1, l2 → sg/2.
Therefore, the value ψ(1,1) has no practical mean-
ing and it can be left undefined. To be convenient for
the denotation of the function ψ , ψ(1,1) can also be
set as any value in [0,1], for example as the value 1.
The assumption will not influence the rationality of
the function.

It is interesting that the triangular co-norm3 sat-
isfies all the conditions of the total entropy. For sim-
plicity, we only give the following commonly-used

triangular co-norms:

(i). ψ1(x,y) = max(x,y); (22)
(ii). ψ2(x,y) = x+ y− xy; (23)
(iii). ψ3(x,y) = min(x+ y,1); (24)

(iv). ψ4(x,y) =
{

(x,y) ∈ (0,1]× (0,1]
max(x,y),otherwise.

(25)

By replacing x with EF(L(P)), and y with
EH(L(P)), we can obtain the expression of the to-
tal entropy. The corresponding total entropy gen-
erated from the function ψ l(x,y) is denoted as
E l

T (L(P)), l = 1,2,3,4. Similarly, we can also use
the convex combination of them as the new total en-
tropy as

ET (L(P)) =
4

∑
i=1

λiψ i (EF(L(P)),EH(L(P))
)
, (26)

where λi ∈ [0,1], i = 1, . . . ,4, ∑4
i=1 λi = 1. The arith-

metic mean is obtained in the case that λi = 1/4, i =
1, . . . ,4.

4. Multi-criteria decision making model based
on PLTSs

In this paper, we consider the linguistic multi-
criteria decision making problem that consists of a
finite set of alternatives A = {a1, . . . ,am}, and a set
of criteria C = {c1, . . . ,cn} with the weighting vec-
tor W = (w1, . . . ,wn) being completely unknown. A
group of decision makers provide their assessments
of each alternative with respect to the criteria, and
each element of the collective assessment matrix is
composed of several linguistic terms, each of which
has a probability that is generated by the frequency
of that term in the group opinions. After normal-
ization, an assessment matrix based on PLTSs is
obtained as L(kl)(P(kl)) =

(
l(kl)
i (p(kl)

i )
)

m×n
, where

l(kl)
i ∈ S, i = 1, . . . ,#L(kl)(P(kl)) denotes the ith as-

sessment of the alternative ak under the criterion cl ,
with the probability p(kl)

i .
In the following, we introduce the resolution pro-

cess based on the fuzzy TOPSIS method 16.
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Step 1. Compute the average total entropy under
each criterion cl, l = 1, . . . ,n as:

ET (cl) =
1
m

m

∑
k=1

ET (L(kl)(P(kl))). (27)

Step 2. Compute the weights of the criteria as

wl =
1−ET (cl)

m
∑

k=1

(
1−ET (cl)

) , l = 1, . . . ,n. (28)

The idea of the above method lies in the fact that
the less uncertainties contained in the assessments
under the criterion, the more important of the crite-
rion, and thus the bigger weight it should have.

Step 3. Calculate the fuzzy positive ideal solu-
tion c+l = {sg(1)}, and the fuzzy negative ideal so-
lution c−l = {s0(1)}. Then the normalized distance
between each alternative and the fuzzy positive ideal
solution or the fuzzy negative ideal solution can be
obtained as (k = 1, . . . ,m)

d+(ak) =
n

∑
l=1

wld
(

L(kl)(P(kl)),c+l
)
, (29)

d−(ak) =
n

∑
l=1

wld
(

L(kl)(P(kl)),c−l
)
. (30)

Step 4. Compute the closeness coefficient (CC)
of each alternative as

CCk =
d−(ak)

d+(ak)+d−(ak)
. (31)

Step 5. Rank the alternatives according to their
CCs and select the biggest one as the solution.

Remark 1. By simple computation in Step 3, we
have d+(ak)+d−(ak) = 1. Actually,

d+(ak)+d−(ak)

=
n

∑
l=1

wl

(
1−E(L(kl)(P(kl)))/g+E(L(kl)(P(kl)))/g

)
=

n

∑
l=1

wl = 1.

Therefore, in Step 4 we have CCk = d−(ak), and
Step 4 can be omitted.

5. An illustrative example

For convenience of comparison, in this section we
adopt the illustrative example in Ref.12. The direc-
tors of a company want to invest on three projects
A = {a1,a2,a3}, and each project is evaluated from
four criteria C = {c1,c2,c3,c4} based on a linguis-
tic term set {s0,s1, . . . ,s8} by using the Balanced
Scorecard method with the criteria weights being
completely unknown. After collecting the assess-
ments of the directors and a normalization process
is further conducted, the following assessment ma-
trix based on PLTSs is obtained as in Table 3.

The problem is solved by the following steps in
the previous section.

Step 1. Compute the average total entropy of
each criterion. There are six formulas of the fuzzy
entropy, six formulas of the hesitant entropy, and
four formulas of the total entropy introduced in this
paper. Therefore, we have 6× 6× 4 = 144 differ-
ent combinations of the total entropy. Since some
entropy measures contain parameters, there are ac-
tually infinite formulas of total entropy, and we can-
not explore all of the cases. For simplicity, we adopt
the arithmetic mean of the fuzzy entropy, the hesi-
tant entropy and the total entropy expressed by Eqs.
(10), (21) and (26) respectively.

Assume that the parameters in the entropy mea-
sures are given as q = 1 in E2

F , q = 0.5 in E5
F , q = 1

in E6
F , r = 1 in E1

H , a = 3 in E5
H . The results are

shown in Table 4.
Table 4. The computation results of the entropy measures and
the criteria weights.

EF EH ET W

c1 0.9294 0.1453 0.9673 0.1736
c2 0.9006 0.1600 0.9543 0.2425
c3 0.8355 0.1780 0.9242 0.4022
c4 0.9249 0.1757 0.9657 0.1817

Step 2. Compute the weighting vector W of the
criteria and the result is shown in Table 4.

Step 3. Calculate the distance be-
tween each alternative and the fuzzy pos-
itive ideal solution or fuzzy negative
ideal solution as (d−(a1),d−(a2),d−(a3)) =
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Table 3. The normalized assessment matrix 12.

c1 c2 c3 c4

a1 {s3(0.4),s4(0.6)} {s2(0.2),s4(0.8)} {s3(0.2),s4(0.8)} {s3(0.4),s5(0.6)}
a2 {s3(0.8),s5(0.2)} {s2(0.25),s3(0.5),s4(0.25)} {s1(0.25),s2(0.5),s3(0.25)} {s3(0.8),s4(0.2)}
a3 {s3(0.6),s4(0.4)} {s3(0.75),s4(0.25)} {s3(0.33),s4(0.33),s5(0.33)} {s4(0.8),s6(0.2)}

(0.4737,0.3379,0.4733).
Step 4. Rank the alternatives according to their

CCs as a1 ≻ a3 ≻ a2, and the best choice is a1.
It can be seen that our result produces the same

ranking as the extended TOPSIS method and the
aggregation method in Ref.12. In fuzzy TOPSIS
method, the ranking of alternatives is determined
solely by the weights of criteria when the assess-
ments of each alternative under the criteria are fixed.
Although the criteria weights of our method and
Ref.12 are different, they have a common character-
istic that the ranking of the criteria weights is the
same, i.e., w3 > w2 > w4 > w1. Therefore, the rea-
son for the same ranking of alternatives lies in the
same ranking of criteria weights. The Ref.12 uti-
lized the optimization model by maximizing the de-
viation of the weighted assessments of alternatives
under each criterion to compute the criteria weights.
Our method seems to be more direct and flexible,
which computes the criteria weights by using the
entropy measure of the assessments under each cri-
terion. Such entropy measures deal with PLTSs in
a comprehensive way by considering the probabil-
ity, the fuzziness and the hesitation contained in the
PLTSs, and different forms of entropy can be se-
lected by different decision makers.

6. Conclusions

In the situation that includes both hesitation and
probability information, the PLTSs serve as a good
tool to consider both information. The PLTSs con-
tain probability, fuzziness and hesitation informa-
tion, which can be measured by fuzzy entropy and
hesitant entropy respectively, and both entropy mea-
sures can be combined into the total entropy. This
paper discusses different forms of such entropy mea-
sures and applies them in the multi-criteria decision

making. In the future, more forms of the entropy
measures will be further investigated, and new ap-
plications of the entropy will be studied.
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