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Abstract— This paper is devoted to simulation of the stress-

strain state of a steel-encased concrete piles. Often, the use of 

steel-encased concrete piles is the most technologically 

advantageous, especially when large-sized structures are built in 

difficult ground conditions. However, traditional concrete-filled 

steel tube structures have a significant disadvantage. The 

expansion of the concrete is less than the expansion of the steel 

tube in radial direction. Thus, the steel tube is not in a contact 

anymore with the concrete. The article proposes the construction 

of steel-encased concrete piles, inside which concrete is 

comprehensively compressed by the tube. It is named a concrete 

end-bearing pile in the steel cage. Now there is no reliable model 

for steel-encased concrete pipes, which is acceptable for practical 

use, namely, which fully reflects the features of their stress-strain 

state and takes into account the nonlinearity of concrete 

deformation. The article describes the simulation of a nonlinear 

stress-strain state of concrete confined by a tube. The formulas 

for the three-dimensional model of a steel-encased concrete end-

bearing pile considering nonlinearity of a concrete deformation 

diagram are obtained in this paper. Load-bearing capacity of the 

concrete end-bearing pile in the steel cage is analyzed. In the 

article, the effect of the tube wall thickness on the load-bearing 

capacity of the pile is considered. 

Keywords— steel-encased concrete pile, concrete-filled steel 

tube constructions, non-linear concrete deformation diagram 

I. INTRODUCTION 

A steel-encased concrete pile is a steel tube immersed in 
the ground and filled with a concrete mixture. The technology 
of erecting such foundations makes it possible to immerse 
steel-encased concrete piles in constrained difficult conditions, 
in difficult ground conditions and in the construction of large-
sized buildings. In work [1], the existing methods for 
calculating concrete-filled steel tube structures are presented. 
The observation paper contains the following conclusion 
“there is no reliable model for concrete-filled steel tube 
structures in the limiting state that is acceptable for practical 
use”. Therefore, “further research in this area is highly 
required” since the existing methods do not take into account 
the thickness of the tube wall and the forces of interaction 
between concrete and steel. 

There are a lot of different opinions about behavior of the 
steel-encased concrete piles under load. Many scientists 
suggest that the bearing capacity of concrete-filled steel tube 

structures is increased, explaining this by strengthening the 
concrete due to the reactive lateral pressure [2-8]. However, 
other experimental studies indicate the breaking of contact 
between the concrete core and the steel tube, as was the case 
in the operation of the pipe-concrete bridge across the Iset 
river [9]. In 1991, the book of L. Storozhenko “Calculation of 
concrete-filled steel tube structures” was published. The book 
describes an attempt to consider the problem of compression 
of a concrete-filled steel tube column as a spatial problem in 
the theory of elasticity [7]. However, the author made a 
mathematical error in the calculations and thus  made the 
incorrect conclusion that the steel tube is always in a contact  
with the concrete. Many of the leading researchers refer to the 
works of L. Storozhenko [2, 8, 9], but due to the presence of 
the error, this work does not help clarify the question of the 
spatial work of concrete-filled steel tube structures. In 
addition, concrete is a non-linearly deformable material, and it 
is necessary to take this feature into account in the spatial 
simulation of the stress-strain state of steel-encased concrete 
piles. 

II. METHODS 

A. Simulation of the stress-strain state of concrete in the 

nonlinear case 

 Simulation of the stress-strain state of concrete in the 
general case is a complex and unsolved problem because 
concrete has a non-linearity of deformation. In addition, a 
complex spatial stress-strain state is characteristic for 
concrete, which is part of steel-encased concrete piles due to 
interaction with the steel tube. Let us suppose that the steel-
encased concrete end-bearing pile is under the action of axial 
compressive force P. It is assumed that the stress-strain state 
of the structure has axial symmetry and longitudinal 
displacements W depend only on coordinate z, and radial 
displacements U - on r, where “z, θ, r” is the cylindrical 
coordinate system (Fig. 1). In this case, normal stresses 

,,, zzrr    arise, and tangential stresses do not arise. 
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 A)      

 
 

        B)                                              C) 

Fig.1. The design model; A) a concrete-filled steel tube end-bearing 

pile; B) the concrete core cross section of the pile; C) the steel tube cross 
section of the pile 

 
To take into account the non-linearity of concrete 

deformation as a state diagram, determining the relationship 
between stresses and deformations, let us use a three-line 
diagram (Fig. 2) describing a uniaxial stress-strain state, 
according to the Construction Norms and Regulations 
63.13330.2012 “Concrete and reinforced concrete structures”. 
There are no recommendations for taking into account the 
spatial stress-strain state of concrete in the Construction 
Norms and Regulations.  Let us consider the proposed three-
line diagram of uniaxial compression of concrete (Fig. 2): 

when  ERb  :6,0*  (section 0-1); when 

  *:6,0 bb RR    (section 1-2),   – stress 

difference, 
bR  – design resistance of concrete under uniaxial 

compression. Many authors suggest a design model that takes 
into account the non-linearity of concrete deformation, but the 
methods vary, because they are based on empirical 
dependencies [10]. 

 
Fig.2.  Real and three-line diagrams of concrete deformation in 

uniaxial compression 

(Stresses and deformations are used without taking into account the sign) 

 
Let us make a natural assumption that the stresses in the 

radial and tangential directions of the concrete core of the 
steel-encased concrete end-bearing pile are much less than the 
axial stresses. Therefore, uniaxial stress-strain states, when 
radial and tangential stresses act separately, always correspond 

to section 0-1 of diagram )6,0( bR  (Fig.2). But in the 

direction of the z-axis, two cases of a uniaxial stress-strain 

state are possible. Case 1: bzz R6,0
 
(section 0-1); or  case 

2: bzzb RR 6,0
 
(section 1-2). At the initial stage (case 

1), all components of the stress tensor 
zzrr   ,,  linearly 

depend on deformations, i.e. Hooke's law is valid (Fig. 2): 
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where Е,ν– Young's modulus and Poisson's ratio of concrete. 

Let us consider case 2. In this state, the stresses and 
deformations in concrete are determined by dependences: 

rr

*

rr   rr ;     *

;  zzzzzz   *

, 

rr

*

rr   rr ;      *

;  zzzzzz   *

 ,   (2) 

where 
****** ,,,,, zzrrzzrr    - values of stresses and 

deformations, when bzz R6,0  ; 

zzrrzzrr    ,,,,, – increments of stresses and 

deformations respectively. 

Let us set that the deformation increments caused by the 
simultaneous action of radial, tangential and axial stress. 
Increments are the sum of the deformation increments caused 
by the action of these stress increments separately. Thus the 
generalized relations of the deformation increments have the 
form: 
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where Е,ν and Е1,ν1 – Young's modulus and Poisson's ratio of 
concrete, when the stress values correspond to sections 0-1 or 
0-2 of the diagram, respectively. 

Relations (3) are analogous to Hooke's law for an 
orthotropic elastic body, the symmetry of the matrices of 
elastic constants implies the fulfillment of the relation: 

EE
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1

1 


                                      
(4)

 

Let us express the stress increments through the 
deformation increments from formulas (3), (4). Then 
equalities (2) and (5) are the spatial law of the stress-strain 
state of the concrete core of the steel-encased concrete pile 
when 

bzz R6,0  (case 2). 

 




















































































































































































rrzzzz

rr

E

E

EE

E

EE

EE

EE

EE

EE

EE

EE

EE

EE

EE

EE

EE

)1(2)1(

)1(

;
2)1(

)2)1()(1(1

)2)1()(1(1

;
2)1(

)2)1()(1(1

)2)1()(1(1

1

1

2

11

2

1

2

11

11
zz

2

11

2

1

2

2

2

11

2

1

2

2

2

11

11
zz

2

11

2

1

2

2

2

11

2

1

2

2rrrr

(5) 

B. Traditional steel-encased concrete end-bearing pile 

Let us represent the solution of the problem of 
compressing the traditional steel-encased concrete piles.  
Because of the axisymmetry of the problem, one of the 
equilibrium equations becomes identity, while the remaining 
two simplify and have the form: 
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z
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(6)

 

In the future to indicate the physical characteristics related 
to the steel tube  the superscript "S" and to the concrete - the 
superscript "C"  are used, 

Load P is acting on the entire cross-section. There are no 
longitudinal displacements of the points on the lower end of 
the end-bearing pile, this is due to an anchorage of the end 
(Fig. 1), so the boundary conditions at the ends of the end-
bearing pile have the form: 

0W  (when z=0); PdF
F

zz   ( when z=h).    (7) 

Let us assume that there is no lateral pressure on the outer 
cylindrical surface of the steel tube. Then the boundary 
condition on the lateral surface is valid (Fig. 1): 

0S

rr   (when r=Rext)                          (8) 

To ensure the joint operation of the steel tube-shell and the 
concrete cylinder, it is necessary to fulfill the conditions of 
layer interfacing (Fig.1): 

S

rr

C

rr   , SCSC WWUU  ,  (when r=Rint)     (9) 

Let us introduce the following notation: 
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p0 - radial pressure at the contact of the layers,  then 

0pS

rr

C

rr   (when r=Rint), р
C
, р

S
 – longitudinal (along 

the z-axis) compressive pressures are applied to the concrete 
core and steel tube, respectively. 

The stress-strain state of the tube material corresponds to 
the generalized Hooke's law (1). 

Let us consider the operation of the pile when the stress-
strain state of concrete corresponds to case 1. Problem (1), (6) 
- (9) is the problem of the spatial theory of elasticity in the 
formulation of Saint-Venant; the solution of problems of this 
type is considered in the articles [11; 12]. The solutions of the 
problems (1), (6) - (8) for the steel tube and the concrete core, 
separately taking into account the first equation for the stresses 
(9) and without taking into account the second and the third 
equalities has the form: 
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Taking into account the second and the third equalities of 
the conditions of layer interfacing (9) and the equalities (7), 
the solution of problem (1), (6) - (9) is obtained: 
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Let us analyze the obtained dependences and draw the 
main conclusions: 

1. According to formula (11), compression pressure 
sign p0 is completely determined by the difference in Poisson's 

coefficients of concrete and steel  SC   . 

2. Poisson's ratio of concrete and steel are 2.0C  and 

3.0S  respectively. Therefore, compression pressure p0<0 

and the radial stresses in the concrete core are tensile (10), 
which leads to a break of contact between the concrete core 

and the steel tube, and therefore, the joint work of concrete 
and steel is not realized. This is an incurable disadvantage of 
traditional steel-encased concrete piles. This fact is also 
confirmed when calculating the traditional constructions 
taking into account the nonlinear deformation of concrete.  

C. Concrete end-bearing pile in steel cage  

Since traditional concrete-filled steel tube structures have a 
significant disadvantage, as mentioned above, the different 
steel-encased concrete pile is proposed. It is a concrete end-
bearing pile in a steel cage. When using this structure, the 
external load is applied only to the concrete core, and the tube 
is used as a cage, while the joint work of the concrete core and 
the steel tube in the longitudinal direction is excluded. 

Let us consider the operation of the structure when the 
stressed state of concrete corresponds to case 1. Equations of 
equilibrium (6) and Hooke's law (1) for concrete and steel and 
the boundary condition on the lateral surface (8) remain in 
effect in the formulation of this problem, but the boundary 
conditions at the ends of (7) vary and have the form: 

0W  (when z=0); PdF
CF

zz   ( when z=h).    (12) 

In this design, there is no joint work of the concrete core 
and the steel tube in the longitudinal direction, and the 
interaction in the transverse direction is performed according 
to the following conditions of layer interfacing: 

S
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The boundary  problem (1), (6), (8), (12), (13) is the 
problem of the spatial theory of elasticity in the formulation of 
Saint-Venant. The solution of problems (1), (6), (8), (12) for a 
steel tube and a concrete core separately, taking into account 
the fact that the longitudinal pressure acts only on concrete, 
and there is no joint work of the layers (13), is obtained:  
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Equations (14) are obtained only with the use of 
equilibrium equations and do not depend on the linearity or 
nonlinearity of the concrete deformation law. The magnitude 
of the interaction pressure of the layers p0 depends on the 
nature of the material deformation. 

Taking into account the conditions of layer interfacing (13) 
and the equalities (12), the solution of the problem ((1), (6), 
(8), (12), (13) is obtained, in which the stress-strain state of 
concrete corresponds to the law (1) (case 1): 
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It follows from formula (15) that the compression pressure 
p0  is always a positive value, hence the radial stresses in the 
concrete core are compressive, the concrete is in a state of 
triaxial compression (according to formula (14)). This fact has 
a positive effect on increasing the strength of the concrete 
core, as shown by the experiments of the researchers [13; 14; 
15; 16]. 

Let us consider the operation of the pile when the stress 
state of concrete corresponds to case 2, that is, taking into 
account the nonlinearity of the concrete deformation diagram. 

In the future, to denote the values related to the solution of 
the problem, taking into account the nonlinearity of the 
concrete deformation diagram, the superscript "n", and when 
considering the deformation of concrete according to Hooke's 
linear law - the superscript "l" will be used. 

Taking into account the conditions of layer interfacing (13) 
and the solutions obtained for the independently operating 
steel cage and the concrete cylinder (14), the solution of the 
non-linear problem (1), (2), (5), (6), (8), (12), (13) is obtained, 
in which the stress-strain state of concrete obeys law (2), (5) 
(case 2): 
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16) 

III. RESULTS AND DISCUSSION 

A. Increasing the load-bearing capacity of concrete under 

comprehensive compression 

Let us analyze the increase in the load-bearing capacity of 
a concrete end-bearing pile in a steel cage due to strengthening 
of the concrete core. The most common form of presenting the 
strength of concrete under a three-axis contraction is the 
formula proposed by F. Richard, A. Brown and A. Brandraeg 
[14]:  

03, pKRR bb  ,                     (17) 

where Rb,3 – design resistance of concrete under three-axial 
compression, K – concrete strengthening coefficient K ≈ 4 [2]. 

Thus, the formula for determining the strength of concrete 
under triaxial compression has the form: 

03, 4 pRR bb 
                       

(18)
 

B. An example 

Let us consider an example of calculation of a concrete-
filled steel tube end-bearing pile. Two different approaches are 
compared: the nonlinear model of the concrete deformation 
diagram (case 2) and the linear model (case 1). Different 
thickness of the tube wall and Rint=0.315 m are taked. The 
deformation-strength characteristics of materials are assumed 
according to the Construction Norms and Regulations 
63.13330.2012 “Concrete and reinforced concrete structures” 
and Construction Norms and Regulations 16.13330.2011 

"Steel Structures": E
С
= 30000 MPa, E1

C
= 8571.4 MPa, 

С = 

0.2, 
С

1  =0.2, Rb= 14.5 MPa (concrete В 25) and E
S
= 206000 

MPa,   
S =0.3.  

The results are presented in Table 1, where Δ is the 
increment of pressure. For example, when the wall thickness is 

4 mm, the maximum value 
nP3 =5.27 MN,

iP3 =4.83 MN, and 

the values of the design resistance of concrete under three-

axial 
n

bR 3, =16.92 MPa, 
l

bR 3, =15.50 MPa(Fig.3). 

 

TABLE 1. RESULTS OF CALCULATIONS WHEN 
С = 0,2, С

1 = 0,2 

Tube 

wall 

thickness, 

mm 
      

4 0.02 0.06 2.42 1.07 1.17 1.09 

4.5 0.02 0.06 2.48 1.08 1.19 1.11 

5 0.02 0.07 2.55 1.09 1.22 1.12 

10 0.04 0.13 3.48 1.17 1.59 1.36 
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Fig.3 - Dependence of the radial compression pressure on the axial 

compressive pressure on concrete when  , and the wall 

thickness of the tube is 4 mm. 

 
According to the results (Table 2) and the presented graph 

(Fig. 3), the calculated compression pressure of concrete is 
underestimated. Thus the design load-bearing capacity of the 
pile is also underestimated as the result of calculation by the 
linear model. 

It is known that the Poisson's ratio of concrete is the 
variable that increases with increasing of load on concrete [5; 
17]. Let us perform calculations with the initial data presented 
above, but the Poisson's ratio of concrete is different            

С

1 = 0.25. The results are presented in Table 2. When the wall 

thickness is 4 mm, the maximum value is 
nP3 =5.48 MN and 

the values of the design resistance of concrete under three-

axial are 
n

bR 3, =17.57 MPa. 

 

TABLE 2. RESULTS OF CALCULATIONS WHEN 
С = 0,2, С

1 = 0,25 

Tube 

wall 

thickness, 

mm 
      

4 0.02 0.07 3.07 1.07 1.21 1.13 

4.5 0.02 0.08 3.19 1.08 1.25 1.16 

5 0.02 0.09 3.31 1.09 1.29 1.18 

10 0.04 0.16 5.51 1.17 1.94 1.66 

 

Comparison of the results presented in Tables 1 and 2 
shows that in the case when the increase in the Poisson's ratio 
of concrete is taken into account, the value of the calculated 
bearing capacity of the concrete core is higher than this value 
when the calculation is made with an unchanged coefficient. 

IV. CONCLUSIONS 

1. The simulation of a nonlinear stress-strain state of 
concrete confined by a tube is presented. 

2. The different steel-encased concrete pile is proposed. 
It is a concrete end-bearing pile in a steel cage. When using 
this structure, the concrete is in a state of triaxial compression. 

3. The formulas for the three-dimensional stress-strain 
state of a concrete end-bearing pile in a steel cage considering 
nonlinearity of concrete deformation diagram are derived and 
presented in the article. 

4. The increase in the load-bearing capacity of a 
concrete end-bearing pile in a steel cage due to strengthening 
of the concrete core is analyzed.  

5. The design load-bearing capacity of the concrete end-
bearing pile in a steel cage increases when the features of the 
non-linear behavior of concrete are taken into account.  

6. The design load-bearing capacity of the a concrete 
end-bearing pile in a steel cage depends on the tube wall 
thickness and increases with increasing Poisson's ratio of 
concrete. 
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