
Method for vibro-acoustic signal processing for 
detection of nascent defect of mechanical assemblies 

 

Lange P. 
Department of measuring technology  
Samara State Technical University 

Samara, Russia 
lange_distance@mail.ru 

Yaroslavkina E. 
Department of measuring technology  
Samara State Technical University 

Samara, Russia 
makarovak@inbox.ru 

 
 
 

Abstract— In the article, the method of early diagnostics of 
nascent defects of mechanical assemblies (friction nodes, 
bearing pairs, gears) is considered by on-line determination of 
high-order statistical moments of the vibro-acoustic signal. To 
determine such statistical moments, a parabolic spline 
approximation of the discrete signal values is used. The spline 
approximation coefficients are determined at each discrete 
sampling interval by digital filter expressions. Expressions for 
the second, third and fourth statistical moments of the vibro-
acoustic signal are determined using its parabolic and cubic 
spline approximation. The signal processing is simple enough 
and can be implemented in a microprocessor controller. The 
characteristics of the proposed method are determined by an 
example of processing a vibro-acoustic signal of a harmonic 
shape. It is shown that with a relatively rare signal sampling, 
the error in determining the dispersion and the fourth 
statistical moment (Excess) of the signal is rather small. The 
use of a parabolic spline approximation of a vibro-acoustic 
signal makes it possible to significantly reduce the frequency of 
the signal sampling and to reduce the amount of data needed to 
determine the statistical characteristics of the signal. 

Keywords – nascent defect, vibro-acoustic signal, signal 
processing, excess of signal distribution, method of excess signal  
determination  

I. INTRODUCTION  

Today problems of early diagnostics of nascent defects 
(scuffing, seizing, etc.) of mechanical assemblies and units 
working in a stressed mode are coming to the fore [1, 2]. 
The methods of detecting such defects were classified in [2, 
3, 12, 30]. A number of researchers have investigated the 
effect of acoustic emission in the detection of bearing 
defects [13-16, 18]. In particular, it was noted that the 
seizing of gear and bearing pairs is one of the most common 
types of failure at high temperatures with a lack of 
lubrication. The vibration technique has been investigated 
and is established as a diagnostic technique for rotating tools 
in machinery in [5-7, 12, 17, 19]. The use of acoustic 
emission in the rail track fault detection was investigated in 
[23], in powerful mechanical units - in [21, 24], in gearboxes 
- in [20, 22, 25]. A number of researches present vibration 
analysis for early fault detection [8, 9]. The use of 

multivariate statistical analysis of vibration signals for the 
detection of localized faults in two-stage helical gears was 
investigated and explored in [10, 26]. 

With use of vibro-acoustic diagnostics methods, the 
initial phase of a defect is difficult to diagnose, since the 
spectral pattern of the vibro-acoustic signal in this phase 
practically does not change. In this case, for the early 
diagnoses, methods for determining the excess, associated 
with the fourth-order statistical moment of vibro-acoustic 
signal, can be applied [4], which makes it possible to 
diagnose the wear of a gear or bearing pair at an early stage 
of its occurrence fairly well. 

For the diagnostics purposes, the distribution curve p(x) 
of the acoustic signal x(t) can be used. At a normal state, this 
curve is two-mode. When defect occurs, the curve p(x) 
changes significantly and becomes unimodal, which 
indicates the growth of noise components. The degree of 
"fineness" or "flatness" of the distribution law is customarily 
characterized by the magnitude of the Excess (Ex). 

Figure 1 shows the dependence of the excess magnitude 
on time of operation of the car rear axle in view of lubricant 
deficit.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Dependence of the Ex of the acoustic signal on the time of operation 
of a car rear axle. 

 
Regardless of the load degree, the Ex is practically equal 

to zero, and increases only when a defect magnitude 
increases dramatically, which allows one to carry out a 
reliable early diagnosis of the rear axle. 
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Approximately the same way is used to diagnose the 
scuffing of the crankshaft bearings of a power unit by 
determining the excess. 

Statistical methods of other orders are also used to 
diagnose defects in mechanical assemblies. For example, 
such defect as a lateral gap in the gearing of the reducer can 
be diagnosed by the dispersion of a vibro-acoustic signal. 
The larger the gap in meshing is, the greater the dispersion 
in both the wide frequency band and the octave bands of 
vibro-acoustic signal is. 

 

II. DESCRIPTION OF MATHEMATICAL METHOD FOR THE ON-
LINE EXCESS DETERMINATION OF  THE VIBRO-ACOUSTIC 

SIGNAL 

Let us consider the algorithm for the moment analysis of 
vibro-acoustic signals. 

In practice, the central moment of the k-th order for a 
stationary ergodic random signal is usually determined by 
its temporal realization: 

( )0

0

1
,

T
k

xk x t dt
T

µ = ∫   (1)   

where x0 (t) is a centered signal, 
T is the period of its processing. 

 
As is well known, the centered signal is determined 

by subtracting the expected value from the signal. 
Vibro-acoustic signals have a limited frequency 

spectrum, so the algorithms for determining the highest 
moments can be estimated using the example of a harmonic 
signal: 

cosx tω= .   (2) 
Taking into account that the measurement of the signal 

with equal probability can be carried out at any time, which 
may be not synchronized with the signal frequency, the law 
of distribution of the signal value is determined by the 
expression [11]: 

( )
2

1
.

1
p x

xπ
=
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Taking into account that the normalized signal x varies 
in the range of (-1, +1), the dispersion of the signal is:  

( )
1 1 2

2

2
1 1

1 1 .21
x

x dx
D x p x dx

xπ− −

= = =
−∫ ∫  (3)  

Accordingly, the third central moment is given by:  
1 3

3 2
1

1
0,

1

x dx
M

xπ −

= =
−∫    (4) 

and the fourth central moment is given by expression: 
1 4

4 2
1

1 3 0.375 .81

x dx
M

xπ −

= = =
−∫   (5)  

These moments, in view of the stationarity and 
ergodicity of the signal, can be determined with the help of 
(1), and their numerical values in this case coincide with the 
values (3) - (5). 

Let us consider the problem of determining these 
moments proceeding from discrete values of the signal. 

Within the sampling intervals, the signal can be 
reconstructed with a certain error by an approximating 
function. In this case, the coefficients of the approximating 
function can be used to determine the moments (3)-(5). 

Let us consider the possibility of using an approximating 
parabolic spline function for this purpose, which is 
described on the nth sampling interval by an expression 

( ) [ ] [ ] [ ]2
2 1 0x t a n t a n t a n= + + . 

 
Coefficients [ ] [ ] [ ]2 1 0, ,a n a n a n  are determined by the 

corresponding expressions of digital spline filters. 
For example, for a five-point parabolic spline filter these 

expressions are determined by the relations [27] 
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where td is the signal sampling interval, 
x [n] is the discrete value of the signal at the n-th point in 

time. 
Accordingly, for a cubic spline filter, analogous 

expressions for the spline-function coefficients are 
determined by the relations [28] 
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(7) 

The parabolic and cubic spline functions, as is well 
known, have no discontinuities at the boundaries of the 
sampling intervals with respect to the 0th and 1st 
derivatives. So the use of spline- function approximating 
practically does not cause the appearance of higher 
harmonics in the signal spectrum reconstructed by such 
approximations. 

It should be noted that the digital filters used to 
determine the spline-approximation coefficients have certain 
smoothing properties. For example, the frequency response 
of a digital filter that determines coefficient a0 [n] of a 
parabolic spline approximation in (6) is given by: 

 

( ) ( ) ( )1 1
1

5 4 2 cos 4
,

8p

cos f f
A f

π π+ −
=   (8) 

where f1 is the relative frequency of the signal, 
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1
1f N= ,   N - number of samples on the period of the 

signal [29]. 
A similar expression for the coefficient a0 [n] of the 

cubic spline approximation in (7) has the form: 

( ) ( ) ( )1 1
1

15 4 2 cos 4
.

18c

cos f f
A f

π π+ −
=   (9) 

The graphs of the frequency responses (8) and (9) are 
shown in Fig. 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Graphs of frequency responses Ap (f1) Ac (f1) of parabolic 
and cubic spline filters, respectively. 

 
It can be seen from Fig. 2 that digital spline filters 

suppress high-frequency interference, which is a valuable 
property of theirs. 

The expected value of a parabolic spline function on a 
single sampling interval is: 
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Accordingly, the expression for the second initial 
moment of the parabolic spline function on one sampling 
interval has the form: 
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 (10) 

and the dispersion (the second central moment) has the 
form [11]: 

[ ] [ ] [ ]2
2 2 .x x xM n A n M n= −    (11) 

If  the parabolic spline - approximation of a harmonic 
signal on its period - is defined by m discrete samples, then 
for a single sampling interval, the expected value is equal to: 
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and the second initial moment is equal to: 
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For a cubic spline approximation of a harmonic signal 
for a unit sampling interval, the dispersion of the 
approximated signal is given by: 
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 (12) 

In particular, with 6 discrete intervals (m = 6) at the 
period of the signal, the dispersion value, found by means of 
(12), is Dx = 0.471. 

Comparing this value with the theoretical value (3), one 
can determine that the error of calculation of dispersion is 
equal 5.9%. 

Fig. 3 presents a plot of the dispersion relative 
determining error from the number N of discrete intervals 
per period of the signal. It is seen from this figure that even 
when m = 10, the accuracy of finding the dispersion is high 
enough  (error ~ 1%). 

The dispersion of the approximated signal is determined 
[11] similar to (11):  

2
2 2 .x x xM A M= −  

In particular, with 8 samples per signal period (m = 8), 
this dispersion is equal to: 

2 0.502xM = . 

This value corresponds quite accurately to a theoretical 
value determined from (3). 
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Fig. 3. Dependence of the relative error d (%) in determining the dispersion 
of harmonic signal using cubic spline approximation from the number N of 
discrete intervals per period of the signal. 

 
The third and the fourth initial moments are 

determined in a similar way: 
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The corresponding equations (12) – (14) can be 
performed by various microprocessor based devices that are 
processing a vibro-acoustic signal. Such devices are part of 
modern systems that carry out sampling and analog-to-
digital signal conversion. 

III.  SAMPLE OF CALCULATION  

The third and the fourth central moments of a vibro-
acoustic signal are determined by the expressions [11] 

3
3 3 2

2 4
4 4 3 2

3 2 ,

2 6 .
x x

x x x

M A M A M

M A M A M A M

= − +

= − + −
 

For eight sample sites for the period of a signal, the 
values of these moments are equal to:  

M3=0.07, M4=0.347. 
Comparing these values with the theoretical, which are 

determined by (3) - (4), one can see that the error in these 
moments calculating does not exceed 7.5%. 

It is interesting to determine the dependence of the value 
of the fourth moment on the number N of sampling points 
per signal period. This dependence is shown in Fig. 4. 

It is clear that even with six sampling intervals over the 
period of the signal (i.e., a relatively rare sampling), the 
error in determining of the fourth central moment is in the 
order of 20%, which is a good indicator for statistical 
measurements. 

The use of other digital filters can lead to a decrease of 
an error in determining the statistical moments of the third 
and the fourth order of the vibroacoustic signal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Dependence of the fourth moment value on the number N of 
sampling points per signal period: M4 - the moment calculated for the 
approximated signal; M4t is the theoretical value of this moment. 

 
For example, for a seven-point parabolic spline filter, the 

expressions for the spline-approximation coefficients are 
determined by the relations: 
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In Fig. 5 there is the dependence of the determination 
errors of the fourth central moment on the sampling 
intervals number N for parabolic spline approximation, 
using a seven-point (curve 2) and five-point digital filter 
(curve 1). 
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Fig. 5. Dependence of the error in determining the 4th central moment of 
the vibro-acoustic signal on sampling intervals number N  per period of the 
harmonic signal. 1- using a 5-point spline approximation, 2 - using a 7-
point spline approximation. 

 
From this figure, it is clearly seen that the use of a 

seven-point filter makes it possible to significantly increase 
the accuracy of the statistical characteristics, determined 
with a small number of sampling intervals per the period of 
the harmonic signal. Thus, for example, even at N = 8, the 
error in determining the fourth central moment does not 
exceed 0.6%. 

The moment values determined by (12) – (14) are used 
in the equations for skewness (Skew) and Exess which can 
be used for early diagnosis of defects in friction pairs: 

3 4
3/2 2

; 3.
x x

M M
Skew Ex

D D
= = −  

Let us consider the influence of random noise imposed 
on a vibro-acoustic signal (2) on the accuracy of 
determining high-order statistical moments. 

In this case, the vibration signal is determined by 
expression: 

( )cos ,x t k y tω= + ⋅  

where y(t) is a random signal with a uniform distribution 
density with intensity k. 

Fig. 6 shows the dependence of the error in 
determining the Excess on the maximum value of the noise 
level, which is represented as a percentage of the signal 
amplitude. It can be seen from this figure that even at a 35% 
level of a random component, the error in determining the 
excess is less than 10%. 

IV.  RESULTS AND DISCUSSION 

An early diagnosis of nascent defects is possible by 
determining the statistical moments of the third and fourth 
orders of the vibro-acoustic signal. This diagnostics is 
possible in the real time operation of the controlled 
mechanism. To reduce the frequency of a vibro-acoustic 
signal sampling in determining its statistical moments, it is 
advisable to use a spline approximation of the discrete 
signal values. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6. Dependence of the error d (%) in determining the Excess of the signal 
at the level ym  (%) of the noise component 

V. CONCLUSION 

The coefficients of the spline-approximating function 
(parabolic or cubic) are determined quite simply using 
digital filtering algorithms, and these coefficients are used to 
calculate the statistical moments of 2, 3, and 4 orders of the 
vibro-acoustic signal. The use of cubic spline approximation 
makes it possible to improve the accuracy of determining 
the mathematical expectation and dispersion of a signal, but 
the use of parabolic spline approximation makes it possible 
to use simpler relations in determining the 4th order moment 
(Excess) with a sufficiently small error in its determination. 
The application of the proposed methods provides an 
insignificant influence of high-frequency random noise on 
the accuracy of determining of high-order statistical 
moments of a vibro-acoustic signal, which is due to the 
filtering properties of spline-approximation algorithms. 

 

References 

[1]  V. Koshkin, Methods of measurement and experimental study of noise 
and vibration of car engines, Moscow: Mechanical engineering, 1988. 

[2]  V. Tolsky, Vibroacoustics of cars, Мoscow: Mechanical engineering, 
1988 . 

[3]  M. Genkin, Vibro-acoustic diagnostics of incipient defects, Moscow: 
Mechanical Engineering, 1984. 

[4]  C. Liefooghe,. Integration of structural dynamics into fatique 
prediction, Noise & Vibration Worldwide, No.1, pp.6-8, 1992. 

[5]  T. Toutountzakis, C K Tan, D Mba, Application of Acoustic Emission 
to seeded gear fault detection, NDT & E International, Volume 38, 
Issue 1, January 2005, pp 27-36. 

[6]  A. M. Al-Ghamdi, P. Cole, R Such, D. Mba, Estimation of bearing 
defect size with Acoustic Emission, INSIGHT, Vol. 46, no. 12, pp 758-
761, Dec 2004. 

[7]  D. Mba, A. Cooke, D. Roby, G. Hewitt, Detection of shaft-seal rubbing 
in large scale power generation turbines with Acoustic Emissions; Case 
study, Journal of power and energy, part A, I Mech E, Vol 218, No. 2, 
Part A, pp. 71-82, March 2004. 

 [8]  C. K. Tan, An investigation on the diagnostic and prognostic 
capabilities of acoustic emission (AE) on a spur gearbox, PhD Thesis, 
School of Engineering, Cranfield University, UK, 2005. 

 [9]  A. M. Al-Ghamdi, D. Mba, A comparative experimental study on the 
use of Acoustic Emission and vibration analysis for bearing defect 

1 

2 

4    8        16           20 

20 
 

16 
 

12 

 
8 

 
4 

N 

δ, % 

d % 

10 
 

8 

 
6 
 

4 

 
2 
 

0 

ym  % 
0        5         10       15      20       25       30 

Advances in Engineering Research, volume 133

907



identification and estimation of defect size, Mechanical Systems and 
Signal Processing, Volume 20, Issue 7, pp. 1537-1571, October 2006.  

[10]  N.  Baydar, A. Ball, Detection of incipient tooth defect in helical 
gears using multivariate statistics, Mechanical Systems and Signal 
Processing, 15 (2), pp. 303-321, 2001. 

[11]  Ash, Robert B. Basic propability theory, Robert B. Ash, Dover 
publications, New York, 2008. 

[12]  M.D. Genkin, A.G. Sokolova, Vibroacoustic diagnostics of 
machines and mechanisms, Moscow, Mashinostroenie publ., 1987,  
288 p. 

[13]  T.J. Holroyd, N. Randall, Use of Acoustic Emission for 
Machine Condition Monitoring, British Journal of Non-Destructive 
Testing, 35(2), pp. 75-78, 1993. 

[14]  L. M. Roger, The application of vibration analysis and acoustic 
emission source location to on-line condition monitoring of anti-
friction bearings, Tribology International, 1979, pp. 51-59. 

[15]  Y. He, X. Zhang, M. Friswell, Defect Diagnosis for Rolling 
Element Bearings Using Acoustic Emission. Vibration and Acoustics, 
131 (061012), pp. 1-10, 2009. 

[16]  M. Elforjani, D. Mba, Accelerated natural fault diagnosis in 
slow speed bearings with acoustic Emission. Engineering Fracture 
Mechanics, 77, pp. 112-127, 2010. 

 [17]  S. Al-Dossary, R.I. Hamzah, D. Mba, Observations of changes 
in acoustic emission waveform for varying seeded defect sizes in a 
rolling element bearing. Applied Acoustics, 70, pp. 58–81. 2009. 

[18]   Morhain, A., and Mba, D., Bearing defect diagnosis and 
acoustic Emission. Engineering Tribology, 217 (4), 257-272, 2003.  

[19]   D. Mba, and R.H. Bannister, Condition monitoring of low-speed 
rotating machinery using stress waves: Part 1 and Part 2, Journal of 
Process Mechanical Engineering, 213(3), pp. 153-185, 1999. 

[20] D.G. Gu, J.G. Kim, Y.S. An, B.K..Choi, Detection of faults in 
gearboxes using acoustic emission signal. Journal of Mechanical 
Science and Technology, 25 (5), pp. 1279-1286, 2011. 

[21]  D. Mba, A. Cooke, D. Roby, G. Hewitt, „Detection of shaft-seal 
rubbing in largescale power generation turbines with Acoustic 

Emissions; Case study‟, Journal of power and energy - part A, I Mech 
E, Vol 218, No. 2, Part A, pp 71-82, ISSN 0957-6509, March 2004. 

[22]   C. K. Tan and D. Mba, „Identification of the Acoustic Emission 

source during a comparative study on diagnosis of a spur gearbox‟, 
Tribology International, Vol. 38, Issue 5, pp. 469-480, 2005.  

[23] K. Bruzelius, D. Mba, „An initial investigation on the potential 
applicability of Acoustic Emission to rail track fault detection„. NDT 
& E International, 2004, Volume 37, Issue 7, pp. 507-516. 

[24] L. Alfayez, D. Mba, „Detection of incipient cavitation and the best 
efficiency point of a 2.2MW centrifugal pump using Acoustic 
Emission, Journal of Acoustic Emission, Vol. 22, pp. 77-82, December 
2004. 

[25]  T. Holroyd. „Acoustic Emission & Ultrasonic‟, First Edition. 
Coxmoor Publishing Company, Oxford, 2000. 

[26]   R.I. Raja Hamzah, D. Mba, „The influence of operating 
condition on acoustic emission (AE) generation during meshing of 
helical and spur gear‟, Tribology International, vol. 42. Iss. 1, pp. 3-14, 
2009. 

[27]  P. Lange, Spline - approximation of discrete values of signals 
using digital filtering methods, Journal of Samara State Technical 
University, Ser. Physical and Mathematical Sciences, Issue 19,  pp. 
134-138, 2003. 

[28]  P. Lange, M. Ungarov, O. Matveev, Approximation of discrete 
values of signals using cubic spline filter, Journal of Samara State 
Technical University, Ser. Technical Sciences, Issue 2(50),  pp. 106-
114, 2016. 

[29]  R. Hamming, Digital Filters. Prentice Hall inc., Englewood 
Cliffs, New Jersey, 1977, 224 p. 

 

Advances in Engineering Research, volume 133

908




