
 

 

Convolution Pedestrian Detection Based on Random Fusion of Color and 
Gradient 

Gui Xiangquan1, Jiang Jiajun1, Li Li1,Dongmei Chen2, Lei Gao2 
1 School of computer and communication 

LanZhou University Of Technology 

No. 287 Lan Gong Ping Road, Qilihe District, Lanzhou, Gansu, China 
2 GanSu Province Lanzhou Three Dimension Big Data Standardization Research Institute Co.,Ltd., Lanzhou 

Gansu 730050 

Keywords: double color; channel switching; extended operator; random fusion; 

Abstract. The complex prospects in pedestrian detection, such as backpacks and other obstacles, 
are likely to cause interference to pedestrians. Since previous pedestrian detection can only use 
separate gradient information, the color information is neglected, and the gradient direction 
information is not accurate because of noise. In this paper, we propose a convolution network 
based on the combination of double color and improved Sobel extended gradient information to 
detect pedestrians and other prospects. The model combines convolution of RGB and HSI color 
channels and improved Sobel extended gradient fusion channels respectively. Then the stochastic 
fusion feature vector method is proposed to fuse the color and gradient information randomly, and 
the final result of pedestrian detection is obtained. Experimental results show that the proposed 
method improves the detection accuracy. 

Introduction 

Pedestrian detection is widely used in pedestrian behavior analysis, security system, intelligent 
transportation and other fields [1,2]. It is also one of the important research fields in computer 
image processing, pattern recognition and other fields. Pedestrian environment, attitude, angle of 
view and illumination are very different, especially when pedestrian foreground is complex, the 
irregular foreground shape and occlusion are the difficult points of pedestrian detection problems 
[3]. How to detect pedestrians and their belongings quickly and accurately from complex 
foreground is still one of the hot issues that need to be solved urgently [4]. The current 
mainstream method of pedestrian detection can be divided into three categories: the first category 
is based on HOG(Histograms of Oriented Gradients) and SVM(Support Vector Machine) 
combined with pedestrian detection method, and based on the improved HOG features derived 
from other methods. The method has good results in detecting images with uniform background 
and uniform scale [5]. The second kind is the pedestrian detection method [6] based on Adboost 
cascade classifier. This method combines many weak classifier detection, and this method is 
better to detect pedestrian in complex scenes. The third is the use of neural networks to detect 
pedestrians. The method trained the model in advance, and the training parameters were set in the 
weight of each level. The algorithm has good robustness to illumination and shadow, and is easy 
to identify different shapes of pedestrians [7], but it still needs to be improved in complex 
foreground pedestrian detection problems. In recent years, deep convolution network has been 
widely used in target detection fields, which greatly improve the accuracy and efficiency of 
pedestrian detection [8,9]. 

Based on the feature extraction of deep convolution network, a convolutional neural network 
based on color fusion and gradient direction stochastic fusion is proposed to detect pedestrians in 
complex foreground. Compared with the previous only gradient feature extraction or single 
channel color features, the image is converted into two color channels and a gradient of channel, 
then many features were extracted and integrated. Finally, we make fusion detection and 
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TABLE 1. Comparison of methods in complex foreground 
Pedestrian 
detection 
method 

Feature 
dimension 

Comprehensive 
detection rate 

Time 
(ms) 

HOG+SVM[14] 3780 44% 56.28 
Fast-RCNN[15] 4096 53% 19.24 
YOLO9000 1470 62% 15.74 
Improved 
model 

3150 68% 24.38 

By comparing the experimental results of TABLE 1, it shows that the total detection rate of this 
model is 15% higher than that of Fast-RCNN, 6% higher than the YOLO9000, and is obviously 
better than the artificial feature method. Although the execution time is slightly slower than the 
YOLO9000 and Fast-RCNN, the performance of GPU is better than the traditional feature 
detection algorithm because of its speedup.  

Conclusion 

In this paper, double color and extended Sobel gradient features are randomized for fusion in 
convolution neural network, which is used to carry out pedestrian detection in complex 
foreground environment. The RGB and HSI dual color channels and the improved Sobel extended 
operator are used to extract the features. Then we randomize the fusion, so that the model fully 
utilizes the color and the extended gradient information to detect pedestrians. 

The validity of the model is verified on the sample library by using improved detection model, 
which improved activation function. 

For the reasonable size of pedestrian detection, the effect is good. But for the obvious smaller 
pedestrians, detection effect still needs to be improved. In the follow-up work, it is necessary to 
combine small target pedestrians for more accurate detection of pedestrians with different 
foreground.  
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