
A novel HEFTS-L algorithm for scheduling large number of DAG tasks 

Xin Liu1,2,a, Rongbin Xu1,2,3,b,*, Yongliang Cheng2,c and Pengfei Zhang2,d 
1 Key Laboratory of Intelligent Computing & Signal Processing, Ministry of Education, Anhui University,  

2 School of Computer Science and Technology, Anhui University, Anhui Province, China 
3 Co-Innovation Center for Information Supply & Assurance Technology, Anhui University, Hefei, China 

a 1025722404@qq.com, b xurb_910@ahu.edu.cn, c 1399603339@qq.com, d 1982471053@qq.com 

Keywords: Scheduling; Business process management; DAG; HEFT algorithm; HEFTS-L 
algorithm 

Abstract: In recent years, along with the development of technologies for distributed computing 
such as big data and clouds workflow systems, efficiency of workflow scheduling has become very 
impotent. Hence scheduling of multiple DAGs sharing on heterogeneous distributed resources has 
attracted intensive attention recently. This paper issues on scheduling of multiple DAGs with 
Deadline constraints surrounding scheduling of multiple DAGs sharing on heterogeneous 
distributed resources on traditional DAG-based task. It brings forward two parameter association 
methods to balance DAG Deadline constraint priority including relative strictness and laxity, which 
are used to balance priority of multiple DAGs. An improved HEFT algorithm based on priority was 
put forward to schedule multiple DAGs with deadline constraint. Through experiments, the 
phenomenon of "overload" can be detected due to the high degree of emergency of DAG 
scheduling. Once a task was detected, it can be selective discarded with corresponding measures, so 
as to maximize DAG before deadline. 

1. Introduction 
Scheduling is a fundamental problem in computer science and has a wide range of applications 

in many fields [1]. In recent years, with the development of big data and cloud computing, a large 
number of business processes have been generated, and the reasonable scheduling of business 
processes has become a focus of scholars at home and abroad [2-3]. Business process management 
can generally be abstracted as data path, structured and unstructured data storage and access, and 
there is generally a mutual dependence relationship between each process [4]. In the process, for 
example, between a data transmission, parallel relationship constraints and timing constraints, etc., 
these relationships can be through the use of Directed Acyclic Graph modelling, ensure all tasks are 
completed in a limited amount of time scheduling, improve the efficiency and reliability of the 
scheduling system. Meanwhile, the DAG model can be used for real-time scheduling system 
because the business process usually pursues timeliness.  

The scheduling of a large number of DAG tasks is a classic NP problem [2, 5], and the tasks 
have their own constraints. Task scheduling can be divided into uniprocessor scheduling and 
multiprocessor scheduling. At present, the problem of multiprocessor scheduling for a DAG task is 
approaching, and the research on different target resources, scheduling objectives and scheduling 
methods is approaching maturity [6-7]. With the rapid development of grid computing and cloud 
computing applications, in a heterogeneous distributed computing environment on how to improve 
the multiple task scheduling performance aspects put forward the new requirements, also caused the 
wide attention of scholars both at home and abroad [8-9]. For multiprocessor task scheduling, how 
to improve the throughput of multi-task scheduling system is a research hotspot [10]. At present, the 
researchers have proposed many about methods of improving the performance of DAG task 
scheduling, but most of these articles focus on how to improve the efficiency of without time 
constraints of scheduling, in order to complete all the tasks as fast as possible. And it does not take 
into account a large number of real-time scheduling parallel tasks, more does not take into account 

237 
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Copyright © 2017, the Authors.  Published by Atlantis Press.

3rd Workshop on Advanced Research and Technology in Industry Applications (WARTIA 2017)
Advances in Engineering Research (AER), volume 148



temporal constraints the veracity and the rationality of the task scheduling and resource utilization, 
etc. To meet all these constraints for scheduling a lot with the task of sequence limit is a big 
challenge [11], because not only need to pay attention to the correctness of the scheduling results, 
also need to consider all the execution of task execution time, deadline and concurrent execution 
and other factors. 

For a large number of DAG task sharing processing resources, this paper is based on the 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑆𝑆−𝐿𝐿 
algorithm based on relative rigor and relative laxity. This algorithm will DAG task completion and 
the fairness of task scheduling algorithm performance index, according to different user task 
scheduling in the process of submitting the different deadline, dynamically determine the priority of 
the task, and greatly improve the throughput of task scheduling. At the same time, the task overload 
occurred in the scheduling process, and the reasonable task ejection mechanism is used to improve 
the completion rate of all tasks and the fairness of scheduling. By comparing with EDF algorithm 
and improving LLF algorithm, the effectiveness of 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑆𝑆−𝐿𝐿 algorithm is further verified, and new 
ideas are proposed on how to improve the throughput of large number of business process task 
scheduling. 

2. Task-Scheduling Algorithm 
2.1. Basic Definition 

We consider a task set of n real-time Directed Acyclic Graph (DAG) tasks run on a system of q 
identical processors(P1, P2, P3,…,Pq). The task set is represented by {G1, G2 ,...,G3 ,…,Gn}. Each 
DAG task Gi, where 1≤i≤n, is a deadline graph which consists of a set of subtasks under precedence 
constraints that determine their execution flow. 

 Multiprocessor Task Scheduling problem for dependent tasks can be represented by the Directed 
Acyclic Graph (DAG) G = (V, E), where V is the set of v nodes and E is the set of e edges between 
the tasks (Task and node terms are interchangeably used in the paper). Each edge (i, j) ∈ E 
represents the precedence constraint such that task ti should complete its execution before task tj 
starts. Data is a matrix of communication data, where data i, k is the amount of data required to be 
transmitted from task ti to task tk. The source task is called the parent task while the sink task is 
called the child task. In a DAG, a task with no any parent is called the start task while the task with 
no any child is called the end task. 

In view of above problems, we assume that the target computing environment compose of a set 
Q of q heterogeneous processors connected in a fully connected topology in which all inter 
processor communications are assumed to perform without contention. In our model, we consider 
that computation can be overlapped with communication. A DAG task ti  is characterized by 
({ti,j|1 ≤ j ≤ nj},W,wi,j,ci,k),where the first parameter represents the set of subtasks of ti and ni is 
their number, W is characterized by the DAG task execution cost and wi,j is the execution time to 
complete task ni on processor Pq. The average execution cost of a task is as formula 1 

wı,ȷ���� = ∑wi,j q⁄        (1) 
Where B�  is average transfer rate among the processors in the domain, L�  is the average 

communication startup time. For the other tasks in the graph, the EFT and EST values are computed 
recursively, starting from the entry task, as formula 2 and 3. 

EST�ti, pj� = max�avail[j], maxtm∈pred(ti)(AFT(tm) + cm,i)�   (2) 
EFT�ti, pj� = wi,j +  EST�ti, pj�      (3) 

For the other tasks in the graph, the EFT and EST values are computed recursively, starting from 
the entry task, as formula 4 and 5. 

EST�ti, pj� = max�avail[j], maxtm∈pred(ti)(AFT(tm) + cm,i)�   (4) 
EFT�ti, pj� = wi,j +  EST�ti, pj�      (5) 

It is necessary to get the EFT of a task ti, all immediate predecessor task of ti must have been 
scheduled. 

238

Advances in Engineering Research (AER), volume 148



Where pred(ti) is the task ti parent node and avail[j] is the earliest time at which processor Pj is 
start for task execution. If ti is the last assigned task on processor Pj, then avail[j] is the time that 
processor Pj completed the execution of the task ti and it is ready to execute another task when we 
have a non insertion-based scheduling policy. The inner max block in the EST equation returns the 
ready time, i,e , the time when all data needed by ti has arrived at processor Pj. After a task tj is 
scheduled on a processor Pj, the earliest start time and the earliest finish time of ti on processor Pj is 
equal to the actual start time,  AFT(tm) is the actual completion time of ti parent node tm. After all 
tasks in a graph are scheduled, the scheduled, the schedule length (i,e., overall completion time) will 
be the actual finish time of the end task tend. 

2.2. HEFT Algorithm 
According to the above model and definition Topcuoglu [12] proposed this famous HEFT 

algorithm. With the algorithm, we assume that an example of 4 DAG tasks are scheduled on the 
heterogeneous processors. We assume that a task set of DAG (T1, T2, T3, T4) run on a system of 4 
identical processors (P1, P2, P3, P4). Simultaneously, the number on the upper corner of each subtask 
represents its cı,k���� and the arrows represent their precedence constraints. A directed relation Gi (j, k) 
between subtasks ti,j and ti,k means that ti,j is a predecessor of ti,k, and the latter subtask have to 
wait for all of its predecessors to complete their execution before it can start its own. Each DAG 
task ti,j on multiprocessor of task execution cost (wi,1, wi,2, wi,3, wi,4) and the upward rank of a 
task ti,j as shown Figure 1. 

     
Figure 1 DAG task instances 

Table 1 Execution time of 4 DAG tasks and Ranku(ti) 

 
The HEFT algorithm is an application scheduling algorithm for a bounded number of 

heterogeneous processors, which has two phases: a task prioritizing phase for computing the 
priorities of all tasks and a processor selection phase for selecting the tasks in the order of their 
priorities. 

According to figure 1 and table 1 the data, using the HEFT algorithm, it is readily to get the 
makespan values of four DAG (G1,G2,G3,G4) in the four uniprocessor scheduling, and record for 
   tmakespan−1 =41，tmakespan−2 =35，   tmakespan−3 =23，   tmakespan−4 =15. HEFT algorithm is 
the scheduling algorithm of single DAG on multiprocessor. The situation of scheduling 4 DAG 
tasks is shown in fig.3-2. Based on the assumption that deadline for any task is greater than the 
makespan value, we assume that the deadline for the four DAG tasks is tDeadline−1 =52，  
tDeadline−2=61，tDeadline−3=29 and tDeadline−4=27. 
  

239

Advances in Engineering Research (AER), volume 148



2.3. 𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑺𝑺−𝑳𝑳 Algorithm 
According to HEFT algorithm, every DAG task 𝐺𝐺𝑖𝑖 has a makespan value, and the value is easy 

to calculate. We propose two concepts of relative stringency and laxity about multi-resource 
scheduling. We use 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝐺𝐺1 as the Makespan value for a DAG task, and the initial relative 
rigor is defined as formula 6. 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝐺𝐺/𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−𝐺𝐺      (6) 
In the resource scheduling mapping process, the value of  𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝐺𝐺1  is continuously executed 

with the subtasks of the DAG task, and be changed dynamically. At some point, the makespan 
value of the remaining unperformed tasks is represented as   𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝐺𝐺1 , the start time of the 
remaining unexecuted tasks is 𝑡𝑡𝑡𝑡𝐺𝐺  and the earliest end time is 𝑡𝑡𝑡𝑡, so the Makespan value is defined 
as formula 7. 

𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝐺𝐺 = 𝑡𝑡𝑡𝑡𝐺𝐺 − 𝑡𝑡𝑡𝑡𝐺𝐺       (7) 
According to LLF algorithm, the laxity of each DAG task can be calculated as follows. 

𝐿𝐿𝐺𝐺𝐺𝐺 = 𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−𝐺𝐺 − 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝐺𝐺      (8) 
Similarly, at some point, the laxity of the remaining unexecuted tasks can be calculated, as 

formula 9. 
𝐿𝐿𝑟𝑟𝑟𝑟(𝐿𝐿𝐿𝐿) = 𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−𝐺𝐺 − 𝑡𝑡𝑡𝑡𝐺𝐺       (9) 

So initial relative laxity is defined as formula 10. 
                            𝐿𝐿𝐿𝐿𝐿𝐿=𝐿𝐿𝐺𝐺𝐺𝐺/(𝐿𝐿𝐺𝐺𝐺𝐺+ 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝐺𝐺 )                  (10) 

The relative laxity of the remaining unexecuted task is defined as formula 11. 
𝐿𝐿𝑟𝑟𝑟𝑟(𝐿𝐿𝐿𝐿)=𝐿𝐿𝑟𝑟𝑟𝑟(𝐿𝐿𝐿𝐿)/(𝐿𝐿𝑟𝑟𝑟𝑟(𝐿𝐿𝐿𝐿)+ 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝐺𝐺 )      (11) 

In the same way, we can define the initial relative rigor as formula 12. 
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝐺𝐺/(𝐿𝐿𝐺𝐺𝐺𝐺 + 𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−𝐺𝐺)     (12) 

The relative rigor of the remaining unexecuted task is defined as formula 13. 
𝑟𝑟𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟𝑟𝑟) = 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝐺𝐺/(𝐿𝐿𝑟𝑟𝑟𝑟(𝐿𝐿𝐿𝐿) + 𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−𝐺𝐺)    (13) 

Therefore, according to the above parameters, we describe the degree of urgency between 
multiple DAG tasks, and the degree of urgency is defined as   formula 14. 

𝑃𝑃𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟=𝐿𝐿𝐿𝐿𝐿𝐿/𝑟𝑟rio=(𝐿𝐿𝐺𝐺𝐺𝐺/𝐿𝐿𝐺𝐺𝐺𝐺+ 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝐺𝐺 )/( 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝐺𝐺 /𝐿𝐿𝐺𝐺𝐺𝐺+ 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝐺𝐺 )     (14) 
The relative degree of urgency is defined as formula 15. 

𝑃𝑃𝑟𝑟𝑟𝑟(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) = 𝐿𝐿𝑟𝑟𝑟𝑟(𝐿𝐿𝐿𝐿)/𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝐺𝐺     (15) 
Do not add any text to the headers (do not set running heads) and footers, not even page numbers, 

because text will be added electronically. 
For a best viewing experience the used font must be Times New Roman, on a Macintosh use the 

font named times, except on special occasions, such as program code. 

2.4.  Example of 𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑺𝑺−𝑳𝑳 Algorithm 

 

 
Figure 2 the urgency changes of other tasks after algorithm selection of t3,1 task. 

First of all, based on the above four DAG tasks scheduling of HEFT algorithm, we reschedule 

240

Advances in Engineering Research (AER), volume 148



the tasks with HEFTS−L algorithm. According to the four DAG scheduling instances in figure 1, the 
emergency degree of G1, G2, G3 and G4 respectively is Priority−G1=LG1/ tmakespan−G1=11/41=0.2683 
and Priority−G2=LG2/ tmakespan−G2=26/35=0.7429 and Priority−G3=LG3/ tmakespan−G3=6/23=0.2609 
and Priority−G4 = LG4 /  tmakespan−G4 =12/15=0.8. Therefore, you can get the highest level of 
emergency of G3, so you should select subtask scheduling from G3 first. According to the HEFT 
algorithm and table 1, we select the maximum task t3,1 of ranku value in G3 to the processor queue, 
and start to execute. When selecting t3,1 with HEFT algorithm, the t3,1 task already occupies the 
processor resources. Therefore, the remaining tasks and the rest of the DAG task in subsequent G3 
changed the relative degree of emergency, repeated this process, will be finished all the task 
scheduling.  

3. Results 

In order to verify the effectiveness of HEFTS−L algorithm, this paper analyzes the efficiency of 
the algorithm from the completion rate of DAG task. 

From the perspective of resource management, the throughput of tasks is an important index for 
evaluating the effectiveness of an algorithm based on the scheduling of deadlines. For users, the 
DAG task submitted for upload should be completed before the deadline. Apparently, scheduling 
process adopts the measure of DAG term emergency degree of the more accurate parameters (based 
on the multiple emergency degree parameters), so the more number of DAG tasks within deadlines, 
the higher the completion rate. After the scheduling of this algorithm, the number of DAG tasks that 
is completed in the term constraint is nf, the total DAG quantity is n, and the completion rate of the 
scheduling is Rf  = nf /n * 100%. This paper uses this parameter to measure the scheduling 
performance of the algorithm. 

According to the four DAG instances in the figure 1 and table 1, the HEFTS−L algorithm is 
scheduled to be compared with the EDF algorithm and LLF improved algorithm, which compares 
the performance of different algorithm and the completion rate of DAG tasks. 

 

 
Figure 3 Scheduling 4 DAG tasks using the (a) HEFTS−L algorithm (b) EDF algorithm (c) LLF 

algorithm  
In this paper, the scheduling problem of multi-dag task Shared resources is proposed for a large 

number of business process models with deadline constraints, and the DAG task is allocated to 
multi-processor execution. In this paper, an 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑆𝑆−𝐿𝐿 algorithm based on relative rigor and relative 
relaxation is proposed to study the scheduling throughput of DAG tasks and the concept of task 
overload is proposed according to the algorithm. In addition, in order to measure the performance of 
algorithm, this paper will DAG task completion (within the prescribed deadline for completion and 
the number of total ratio) and task scheduling fairness as the performance index of the algorithm. In 
addition, in the experiment, we used a large number of simulation data to perform scheduling and 
comparison performance of 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑆𝑆−𝐿𝐿 algorithm and EDF algorithm and improved LLF algorithm 
respectively. In terms of the final experimental results, the 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑆𝑆−𝐿𝐿 algorithm can determine the 
priority of tasks according to the task scheduling process. At the same time, according to different 
user submission deadline for different throughput, 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑆𝑆−𝐿𝐿 algorithm can greatly optimize the task 

241

Advances in Engineering Research (AER), volume 148



scheduling, and when the overload phenomenon occurred in the process of scheduling, can improve 
the completion of tasks and fairness by reasonable pop-up mission. The performance aspect is more 
efficient than the EDF algorithm and the improved LLF algorithm. 

About this article, there are several aspects of future research. (1) For the description of task 
priority, we can consider more factors such as the cost of task scheduling; (2) considering the 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑆𝑆−𝐿𝐿 algorithm for scheduling DAG tasks that are not submitted simultaneously by users. 

Acknowledgements 
The research is partly supported by the National Natural Science Foundation of China (Grant No. 

61602005), MOE Youth Project of Humanities and Social Sciences (No.14YJCZH169), Natural 
Science Foundation of Anhui Province (1608085MF130), Humanities and Social Sciences in 
Universities of Anhui Province (SK2016A007), Anhui University Doctor Startup Fund. 

References 
 [1] Wang W, Zhu K, Ying L, et al. Maptask scheduling in mapreduce with data locality: 
Throughput and heavy-traffic optimality[J]. IEEE/ACM Transactions on Networking, 2016, 24(1): 
190-203. 
[2] Xu R, Wang Y, Huang W, et al. Near-optimal dynamic priority scheduling strategy for 
instance‐intensive business workflows in cloud computing[J]. Concurrency and Computation: 
Practice and Experience, 2017. 
[3] Zhang H, Cheng P, Shi L, et al. Optimal DoS attack scheduling in wireless networked control 
system[J]. IEEE Transactions on Control Systems Technology, 2016, 24(3): 843-852. 
[4] Xu J, Liu C, Zhao X, et al. Resource management for business process scheduling in the 
presence of availability constraints[J]. ACM Transactions on Management Information Systems 
(TMIS), 2016, 7(3): 9. 
[5] Saikrishna P S, Pasumarthy R, Bhatt N P. Identification and Multivariable Gain-Scheduling 
Control for Cloud Computing Systems[J]. IEEE Transactions on Control Systems Technology, 
2017, 25(3): 792-807. 
[6] Convolbo M W, Chou J. Cost-aware DAG scheduling algorithms for minimizing execution cost 
on cloud resources[J]. The Journal of Supercomputing, 2016, 72(3): 985-1012. 
[7] Yue S, Ma Y, Chen L, et al. Dynamic DAG scheduling for many-task computing of distributed 
eco-hydrological model[J]. The Journal of Supercomputing, 2017: 1-23. 
[8] Kaleem R, Barik R, Shpeisman T, et al. Adaptive heterogeneous scheduling for integrated 
GPUs[C]//Proceedings of the 23rd international conference on Parallel architectures and 
compilation. ACM, 2014: 151-162. 
[9] Xu Y, Li K, Hu J, et al. A genetic algorithm for task scheduling on heterogeneous computing 
systems using multiple priority queues[J]. Information Sciences, 2014, 270: 255-287. 
[10] Kang S, Kang D, Yang H. Real-time co-scheduling of multiple dataflow graphs on multi-
processor systems[C]//Proceedings of the 53rd Annual Design Automation Conference. ACM, 2016: 
159. 
[11] Rongbin Xu, Xin Liu, Zhuangzhuang Yang, Xing Guo, Ying Xie, Jianguo Wu. Real-Time 
DAG Scheduling Method based on the Deadline of Tasks. Computer Integrated Manufacturing 
Systems, 2016, 22(2): 455-464. 
[12] H.Topcuoglu, S.Hariri, W.Min-You. Performance-effective and Low-complexity Task 
Scheduling for Heterogeneous Computing[J]. IEEE Transactions,2002,13:260-274. 

242

Advances in Engineering Research (AER), volume 148


	1. Introduction
	2. Task-Scheduling Algorithm
	2.1.  Basic Definition
	2.2. HEFT Algorithm
	2.3. ,𝑯𝑬𝑭𝑻-𝑺−𝑳. Algorithm
	2.4.  Example of ,𝑯𝑬𝑭𝑻-𝑺−𝑳. Algorithm
	3. Results
	Acknowledgements
	References



