
Instrumentation Based Dynamic Android Application Security Protection
System

Ming Li1,a, Zhikang Piao2,b and Yong Wang2,c,*
1 The Third Research Institute of the Ministry of Public Security, Shanghai, China

2 58 Corp, Beijing 100029, China
3 School of Software, Beijing Institute of Technology, China;

a li.m@vip.163.com, b 764780373@qq.com, c wybit@aliyun.com

*corresponding author

Keywords: Android security, Instrumentation, Permission usage behaviour, Fine-grained access
control

Abstract: Nowadays, smart phones have converted the people's life style; convenience of the
application has a big impact on all aspects of necessities. Considering that applications need to keep
sensitive and private data, the trustworthiness of the application becomes a matter of concern to end
users, and privacy protection is an urgent need. The current Android permission mechanism has the
goal of fast, simple, and easy enforcement, so it designed to be a coarse-grained permission
mechanism. In this paper, a fine-grained access control model for Android applications, which
makes authorization decisions according to the permission usage behaviour and sensitive data
accessed, is proposed. Furthermore, the fine-grained access control model is integrated into actual
APPs through a so-called dynamic Android Application Security System (dAASS), which make use
of instrumentation technology, static analysis and dynamic analysis technology. dAASS can
enhance the security of Android system by fine-grained access control, permission usage tracking
and security violation reminding. Performance experiment shows that deploying dAASS on
Android applications takes less than 1 minute and secured applications exhibit no noticeable
slowdown and Application Not Responding (ANR). dAASS can provide fine-grained real-time
protection from malicious Android applications.

1. Introduction
Android permission mechanism, as the main mechanism of access control for application in

Android framework lev-el, has been widely criticized for its coarse access control. Android is
mainly used in mobile phones, tablet PCs, smart watches and other mobile devices. However, the
permission mechanism does not make specific design for the characteristics of mobile devices, and
it cannot effectively protect the privacy of end users. For Example, an application re-quests the
SEND_SMS permission, and users install it with-out security consideration, the application may
have the authority to send SMS arbitrary. As for the widely-used permission – INTERNET,
Feizollah A et al analysed 7406 applications and found that nearly 98% of those applications had
INTERNET permission [1]. The applications that have INTERNET permission, can send request to
all the HTTP or HTTPS domains, and connect to any host and port. Much research on optimizing
and improving the An-droid permission mechanism have been carried out [2-5].

However, there are some weakness in existing research. First, the access control policy did not
focus on permission usage behaviour and sensitive data. Secondly, the extension of permission
mechanism mainly improved the ability for users to configure permissions during installation, while
seldom payed attention to the runtime permissions usage. Although, Android Marshmallow (API 23
v6.0) updated Android’s permission model, it placed heavy burden on application developers to
insert permission checking code. Finally, modifying Android source code might have negative
effect on the performance of application, such as crash or ANR.

261
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Copyright © 2017, the Authors. Published by Atlantis Press.

3rd Workshop on Advanced Research and Technology in Industry Applications (WARTIA 2017)
Advances in Engineering Research (AER), volume 148

The remainder of this paper is structured as follows: firstly, we discuss the architecture of
dAASS(Section 2), followed by details about the fine-grained access control policy and
implementation of dAASS(Section 3); then we evaluate the performance and security of the dAASS
in Section 4; afterward, in Section 5 we conclude and discuss the future work.

2. System Design
2.1. Components of dAASS

dAASS consists of four main architecture components: The Policy Decision Point(PDP), the
Policy Enforcement Point(PEP), the Run-time Permission Analysis Tool(RPAT), and the
Permission Usage Behaviour Record Server(PUBRS). Figure 1 shows an overview of dAASS’s
architecture. The PDP is a central independent application responsible for storing and managing
user-defined access control policies like those described in 2.2 and sending authorization decisions
to PUBRS. The PEP is in charge of intercepting per-mission usage point and prohibiting permission
usage behaviours that violate an access control policy. PEP is instrumented into target application’s
permission usage point. RPAT is responsible for tracking run-time permission behaviours, and
sending it to PUBRS. The PUBRS is a server receiving and recoding the permission behaviours
from RPAT and PDP. In addition, PUBRS has a security reminder function that helps users
configure his/her access control policies. The final sentence of a caption must end with a period.

Figure 1 dAASS’s Architecture.

Whenever a potential dangerous permission usage behaviour like sending SMS is about to occur
in an application, PEP generates a PDP request, like “Application A is about to send SMS message
with text X to phone number Y”. All requests are transmitted to the PDP. Only if the PDP confirms
that the behaviour is allowed under the current ac-cess control policy, the PEP allows the respective
application to continue. If the PDP denies the execution of the behaviour, the protected behaviour is
skipped, and the execution resumes from the next instruction in the application code. In the
meantime, PDP uploads those permission usage behaviours to PUBRS. Furthermore, if RPAT also
gets those behaviours, it will upload them to PUBRS as well. PUBRS may push those behaviours to
PDP as security reminder message, after PUBRS gets those permission usage behaviours. Security
reminder message can help users update their access control policies accordingly. Finally, PUBRS
saves run-time permission usage behaviours and permission usage behaviours from PDP in database
by permission category.

Executing dangerous permission usage behaviours such as sending SMS messages, or opening
Internet connections are done via calls to permission-related API methods in Android applications.
During the instrumentation phase, dAASS uses Soot to wrap permission usage point with policy
checks that (1) generate a request for the PDP, (2) send it, and (3) only execute the permission

262

Advances in Engineering Research (AER), volume 148

usage behaviour if the response is positive (allow). RPAT and PDP can optionally specify
additional compensative actions to take in response to at-tempted violations, such as reporting the
permission usage behaviour, sending security reminder message or executing user-defined code.
This feature is useful as it allows policies to take corrective measures like reporting targeted attacks
on company smartphones to the IT security department or automatically blocking and uninstalling
the respective applications via the company’s mobile device management (MDM) solution. The
code can either be executed in the context of the application itself, allowing for further inspection
into the monitored application’s state, or in the context of the PDP application, which is a secured
environment.

The PEP must be able to intercept dangerous permission usage behaviours in all applications on
the phone. dAASS therefore instruments a decentralized PEP into every user application by using
Soot[6] during a static pre-processing step on a desktop computer or a server before the respective
application is deployed on the device. On this server, dAASS first analyses the application for data
flows using the FlowDroid [7] data flow tracker. FlowDroid is a context, flow, field, object-sensitive
and lifecycle-aware data flow tracking tool, and is one of the most precise data flow trackers
currently available. The statically extracted dependencies between sources and sinks are
instrumented into the application in form of a table, alongside the code responsible for policy
enforcement. After the instrumented application is installed on the user phone, the enforcement
function can interact with the PDP at runtime to check whether permission usage behaviour shall be
allowed or prohibited. The data flow table is queried to obtain the origin of the data being
transmitted across components or applications, in order to generate proper PDP requests. RPAT is
modified from Droidbox [8] source code, Droidbox is developed to offer dynamic analysis of
Android applications. PUBRS is designed by using Django [9], Django is the web framework for
perfectionists with deadlines.

2.2. dAASS Fine-grained Access Control Policy
dAASS uses fine-grained access control policy based on permission usage behaviours and

sensitive data. The definition of permission usage behaviour and sensitive data are introduced in
following sections (2.2.1 and 2.2.2), and the principle of dAASS Policy is introduced in 2.2.3.

2.2.1. Permission Usage Behaviours
Permission usage behaviours can track the behaviour of using permission protected system

resources inside the application. Based on the life cycle of using system resources inside the
application, we can definite different kinds of Permission Usage Point.

Firstly, an application need to call permission-related API (Application Programming Interface)
to request access to system resources during Resource Request Phase. If the requesting resources
are protected by some permission, An-droid permission enforcement system will check whether the
application is granted related permission. In this paper, the location where the application calls API
to request protected system resources is called Explicit Permission Usage Point. After Resource
Request Phase, depending on the API used when requesting resources, the system resources may be
delivered synchronously or asynchronously to the application, which is called Resource Delivery
Phase. Finally, after the requested resource is delivered to the application, the application enters the
Resource Usage Phase. The application handles the system resource with specific logic, that is, the
behaviour of using sensitive resources inside the application. We refer to these internal usages of
sensitive resources as Implicit Permission Usage Point. The examples of Permission Usage Point is
shown in Figure 2.

Figure 2 Example of Permission Usage Point.

263

Advances in Engineering Research (AER), volume 148

In summary, Explicit Permission Usage Point can track which and where permissions are used,
and Implicit Permission Usage Point can track how the application uses these permissions to
implement specific logic. Based on Explicit Permission Usage Point and Implicit Permission Usage
Point, this paper gives a formal definition of Permission Usage Behaviour.
Definition: a Permission Usage Behavior is a function call diagram G = (V, ε, α) on permission set
ρ, and meets the following conditions. V is the collection of function nodes; ε is the collection of
edge and α is the label function.

V= V_explicit ∪ V_implicit (1)

ε ⊏V ×V

α=V → ρ

The collection of function nodes V should contain all of Explicit Permission Usage Point and
Implicit Permission Usage Point; each edge only connects the function node using the same
permissions; α denotes the permission information used by each function node.

Through using Permission Usage Behaviour to abstract the interaction behaviour between
applications and Android system, the Permission Usage Behaviour can effectively describe how the
application requests system resources and how the application uses the acquired system resources.

2.2.2. Sensitive Data
System permissions are divided into several protection levels. The two most important protection

levels to know about are normal and dangerous permissions.
Normal permissions are used when your app needs to access data or resources outside the app's

sandbox, but where there is very little risk to the user's privacy or the operation of other apps. For
example, permission to set the time zone is a normal permission. If an app declares that it needs a
normal permission, the system automatically grants the permission to the app.

Dangerous permissions are used when the app wants data or resources that involve the user's
private information, or could potentially affect the user's stored data or the operation of other apps.
For example, the ability to read the user's contacts is a dangerous permission. If an app declares that
it needs a dangerous permission, the user has to explicitly grant the permission to the app.

dAASS Policy mainly aims at dangerous permissions and the related sensitive data. Table 1
shows the dangerous permissions and permission groups and related sensitive data.

264

Advances in Engineering Research (AER), volume 148

Table 1 Dangerous permissions and permission groups.
Permission Group Permissions Sensitive Data

CALENDAR READ_CALENDAR
WRITE_CALENDAR

Calendar info

CAMERA CAMERA Camera info
CONTACTS READ_CONTACTS

WRITE_CONTACTS
GET_ACCOUNTS

Contacts

LOCATION ACCESS_FINE_LOCATION
ACCESS_COARSE_LOCATION

GPS

MICROPHONE RECORD_AUDIO IMEI etc
PHONE READ_PHONE_STATE

CALL_PHONE
READ_CALL_LOG
WRITE_CALL_LOG
ADD_VOICEMAIL

USE_SIP
PROCESS_OUTGOING_CALLS

SENSORS BODY_SENSORS Sensors data
SMS SEND_SMS

RECEIVE_SMS
READ_SMS

RECEIVE_WAP_PUSH
RECEIVE_MMS

SMS info

STORAGE READ_EXTERNAL_STORAGE
WRITE_EXTERNAL_STORAGE

Storage info

2.2.3. Fine-grained Access Control Policy
dAASS Policy is fine-grained by making good use of Permission Usage Behaviours and

sensitive data. Considering the previous research [6], we decided to use OSL (Obligation
Specification Language) [10] as policy specification language. OSL is a first order temporal-logic
language (e.g. “A until B”), with support for cardinality (e.g. “A at most 3 times”) and time
constraints (e.g. “A within 30 seconds”). Policies are in form of Event-Condition-Action rules: if a
system event E is detected and allowing its execution would make OSL condition C true, then
action A should be performed. Action A states whether the execution of the event should be
allowed or not, and if any additional action should be executed. Additional actions could for
instance include asking the user for permission or reporting the violation via a popup window. By
default, any event is allowed, unless a mechanism requires its prohibition.

(1) A fine-grained policy based on Permission Usage Behaviour
For instance, an appropriate policy could be “no more than 2 SMS messages per day may be sent

to 12345”. In our framework, this translates into
E=sendTextMessageto12345 C=not (replim(24,0,1,E)) A=Inhibit
The semantics of the not operator is intuitive, whereas replim (time, min, max, φ) is true if φ has

been true in the past time at least min times and at most max times. Otherwise, the operator
evaluates to false. In this example, a message to +01-234-5678 can be sent if, in the previous 24
hours, other SMS to the same number have been sent at least 0 times and at most one time. Recall
that in order for the trigger event to be allowed, the condition must evaluate to false, which explains
the presence of the not operator.

(2) A fine-grained policy based on Sensitive Data
For instance, an appropriate policy could be “no SMS message with IMEI may be sent to 12345”.

In our framework, this translates into
E=sendTextMessage to 12345 C=(parameter IMEI_DATA =true)∧eventually E A=Inhibit
Where eventually means “at least once so far” and if the other SMS message with IMEI has been

already sent in the past, then the event should be forbidden.
(3) A fine-grained policy based on both Permission Usage Behaviour and Sensitive Data

265

Advances in Engineering Research (AER), volume 148

For instance, an appropriate policy could be “no more than 2 SMS messages per day may be sent
to 12345 and no SMS message with IMEI may be sent to 12345”. In our framework, this translates
into

E=sendTextMessage to 12345 C_data= (parameter IMEI_DATA=true)∧eventually E
C_event= not(replim(48,0,1,E)) C=C_event∧C_data A=Inhibit
Considering both Permission Usage Behaviour and Sensitive Data, we only need to do is logical

C_event AND C_data to make a new condition C.

2.2.4. XML Expression of OSL policy
The OSL language allows access control policies to be dynamically deployed by changing

Event-Condition-Action tuples, and can generate so many Conditions that make access control
policies flexible. However, OSL also has its own shortcomings, that is, OSL has high learning costs,
and the user experience is poor.

Since the OSL language is abstract and not conducive to integrating into the system, this paper
uses XML to represent OSL language. XML is cross platform, independent of the development
language and has a strong structure. XML can be used to mark information in a simple way, so it is
easy to parse.

3. Implementation
3.1. PEP

The PEP is instrumented into target application using Soot framework and FlowDroid static
analysis tool. FlowDroid is used to extract Permission Usage Point, and instrument PEP at
Permission Usage Point. PEP consists of major components, the Policy Enforcement Function and
the Auxiliary Classes.

Policy Enforcement Function is in charge of intercepting permission usage point and
prohibiting permission usage behaviour if allowing it would violate an access control policy.

Auxiliary Classes is in charge of interacting with PDP to send permission usage request to PDP
and delivering results from PDP to the policy enforcement function. The auxiliary classes are also
instrumented into target application.

Figure 3 shows how the policy enforcement function and the auxiliary classes work together
with PDP. Firstly, the auxiliary classes connect to PDP, whenever a Permission Usage Behaviour
will occur in an application. The policy enforcement function at related Permission Usage Point
intercepts Permission Usage Behaviour and sends the behaviour parameters to the auxiliary classes.
The auxiliary Classes send request to PDP and get the decision from PDP. Then, the auxiliary
classes call the policy enforcement function to allow or prohibit the behaviour.

The interaction between PDP and PEP uses Android’s IPC (Inter-Process Communication)
mechanism called Messenger [11]. Figure 4 shows the principle of Messenger.

3.2. PDP
The PDP is a central independent application responsible for storing and managing user-defined

access control policies and sending related permission behaviour to PUBRS. The PDP consists of
three components, Policy Deploy Module, Policy Decision Service Module, and Policy Decision
Module. Figure 5 shows the workflow of PDP modules.

The Policy Deploy Module reads a policy file and configures it by sending a message to the
Policy Decision Service Module. The Policy Decision Service Module is a service handling the
permission usage request from PEP, the policy deployment request from the Policy Deploy Module
and delivering it to the Policy Decision Module. The Policy Decision Module is in charge of
making decisions according to user-defined policies, sending result back to PEP and uploading
related Permission Usage Behaviour to PUBRS.

266

Advances in Engineering Research (AER), volume 148

3.3. RPAT
RPAT is responsible for tracking run-time permission related behaviours, and sending it to

PUBRS. RPAT is developed using Droidbox scripts. Figure 6 shows the workflow of RPAT, RPAT
optimizes Droidbox’s static check process and output.

Firstly, RPAT uses Apktool for decompiling apk files instead of AXMLParser used in Droidbox
scripts. The reason is that AXMLParser does not support decompiling the apk file that is
instrumented PEP. Apktool is a tool for re-engineering Android APK files quickly and easily for
many operations no matter their nature and legal-wise actions.

Secondly, RPAT reformats Droidbox’s json output to the format defined in PUBRS’s database in
order to make the Permission Usage Behaviour from PDP Compatible with that from RPAT. The
same data structure is helpful for PUBRS to save Permission Usage Behaviour by permission
category.

3.4. PUBRS
PUBRS has two main functions, one is saving the Permission Usage Behaviour uploaded from

PDP and RPAT, the other is security reminder. We use Django as the web framework to develop
PUBRS, because of its convenience for configuring database such as MySQL, SQLite and so on.

The PUBRS uses MySQL to save Permission Usage Behaviour. The security reminder function
is that whenever the Permission Usage Behaviour is about to occur, PUBRS sends it to PDP in real
time. The users can be informed what permission protected behaviours are requested by the
application (no matter PDP allows or prohibits). This approach can make Permission Usage
Behaviour more intuitively and easy to use since the users do not need to know what system
resources the permission protects.

267

Advances in Engineering Research (AER), volume 148

Figure 3 The workflow of PEP.

Figure 4 The process of Messenger.

268

Advances in Engineering Research (AER), volume 148

Figure 5 The workflow of PDP.

Figure 6 The workflow of RPAT.

4. Evaluation
In this section, we evaluate dAASS. Section 4.1 discusses the effectiveness of dAASS by doing

comparative experiment and multi-application deployment experiment, whereas in Section 4.2 deals
with dAASS’s performance.

The tests were carried out on a Dell computer running Ubuntu version 14.04 on a 2.2 GHz Intel
Core i5 processor and 8 GB of memory. The Android emulator configuration simulates the Nexus 4
with Android 4.1.2(API 16), 768 * 1280xhdpi, the CPU is ARM (armeabi-v7a), the memory is 1.5G,
the heap is configured as 512M, the internal storage size is 2G, and the SD card is 2G.

The target app is a SMS sender, which can send SMS message with IMEI or without IMEI. The
International Mobile Equipment Identity or IMEI [12] is a number, usually unique, to identify 3GPP
(i.e., GSM, UMTS and LTE) and iDEN mobile phones. IMEI is a kind of sensitive data related with
dangerous permission READ_PHONE_STATE.

269

Advances in Engineering Research (AER), volume 148

4.1. Effectiveness
Comparative Experiment uses two Android emulators with the same configuration, one called

D and the other called A. Then we deploy dAASS on D, and configure an appropriate policy could
be “no SMS message with IMEI may be sent to 12345” using PDP as shown in Figure 7.

Figure 7 Comparative Experiment Process.

The result shows that the SMS messages with IMEI cannot be sent to D on which was dAASS
deployed. However, the SMS messages with IMEI can be sent on A - the original Android emulator.

Multi-Application Deployment Experiment uses three applications, these three applications
have the same function that is sending SMS messages (All the three apps contain calls to
sendTextMessage()) as shown in Figure 8. Then we deploy dAASS on D, and configure an
appropriate policy “no more than 2 SMS messages per day may be sent to 12345” using PDP.

Figure 8 Multi-Application Deployment Experiment

When the first application asks PDP for permission, the PDP’s counter is still zero, so it gets
incremented and the request is allowed. The second application’s request is also allowed and the
counter is increased once more. Since the policy only allows at most two SMS messages to be sent,
the request made by the third app (assuming it happens within 24 hours from the first request) is
prohibited and no further SMS message is sent until 24 hours from the first request has passed.

In summary, the first experiment shows the effectiveness of sensitive data based policies of
dAASS, the second experiment shows the effectiveness of Permission Usage Behaviour based
policies of dAASS. During the experiment, PDP can receive the security reminder from PUBRS,
and RPAT can get run-time permission usage behaviour.

270

Advances in Engineering Research (AER), volume 148

4.2. Performance
During the experiments, none of applications exhibited any perceivable slowdown at the aspect

of user experience, and none of the applications crashed, partially thanks to the additional
initializations injected by dAASS. Based on these preliminary experiments we have good reasons to
believe that our approach is feasible on real-world applications.

5. Conclusion
The main contribution of this paper is a dynamic Android Application Security System (dAASS)

with fine-grained access control policy based on Permission Usage Behaviour and sensitive data
(for example, to prohibit a particular phone number to send more than 2 times SMS). No
modifications to the Android operating system are required except RPAT implementation, nor
rooting the phone. The PEP code is instrumented into applications in a very short time and
introduces no perceivable delay or ANR at runtime. We thus consider dAASS as an important step
towards Android application security.

As future work, we plan to extend dAASS to automatically re-instrument applications. This can
be solved by updating applications through a trusted instrumentation server on the Internet.
Furthermore, we also plan to improve the ease of using RPAT, RPAT is based on Droidbox that can
only run in Android emulator. This can be solved by developing RPAT directly based on
TaintDroid[13], that can run in Android mobile phone.

References
[1] Feizollah A, Anuar N B, Salleh R, et al. AndroDialysis: Analysis of Android Intent
Effectiveness in Malware Detection. Computers & Security, 2016, 65(C):121-134
[2] Rosen S, Qian Z, Mao Z M. AppProfiler: a flexible method of exposing privacy-related behavior
in android applications to end users. ACM Conference on Data and Application Security and
Privacy. ACM, 2013:221-232
[3] Pandita R, Xiao X, Yang W, et al. WHYPER: towards automating risk assessment of mobile
applications. Usenix Conference on Security. USENIX Association, 2013:527-542
[4] Jeon J, Micinski K K, Vaughan J A, et al. Dr. Android and Mr. Hide: fine-grained permissions
in android applications. ACM Workshop on Security and Privacy in Smartphones and Mobile
Devices. 2012:3-14
[5] Lam P, Bodden E, Lhotak O, et al. The Soot framework for Java program analysis: a
retrospective. 2011.
[6] Rasthofer S, Arzt S, Lovat E, et al. DroidForce: Enforcing Complex, Data-centric, System-wide
Policies in Android. Ninth International Conference on Availability, Reliability and Security. IEEE
Computer Society, 2014:40-49
[7] Arzt S, Rasthofer S, Fritz C, et al. Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. Acm Sigplan Notices, 2014, 49(6): 259-269.
[8] Desnos A, Lantz P. Droidbox: An android application sandbox for dynamic analysis (2011).
URL https://code. google. com/p/droidbox, 2014.
[9] Django. https://www.djangoproject.com/, 2017.
[10] M. Hilty, A. Pretschner, D. Basin, C. Schaefer, and T. Walter, “A policy language for
distributed usage control,” in Proc. 12th Europ. Conf. on Research in Computer Security. Springer-
Verlag, pp. 531–546.
[11] Messenger. https://developer.android.com/reference/android/os/Messenger.html , 2017.

271

Advances in Engineering Research (AER), volume 148

https://developer.android.com/reference/android/os/Messenger.html

[12] IMEI. "3GPP TS 22.016: International Mobile Equipment Identities (IMEI)" (ZIP/DOC; 36
KB). 2009-10-01. Retrieved 2009-12-03
[13] Enck W, Gilbert P, Han S, et al. TaintDroid. ACM Transactions on Computer Systems, 2014,
32(2):1-29.

272

Advances in Engineering Research (AER), volume 148

	1. Introduction
	2. System Design
	2.1. Components of dAASS
	2.2. dAASS Fine-grained Access Control Policy
	3. Implementation
	3.1. PEP
	3.2. PDP
	3.3. RPAT
	3.4. PUBRS
	4. Evaluation
	4.1. Effectiveness
	4.2. Performance
	5. Conclusion
	References

