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Abstract. Aircrafts’ repairable spare parts inventory control has long been received great importance 

over the decades. In order to allocate the critical spare parts inventory subjected to finite investment 

constraints, a single location multi-item model is deployed to decide the base stock of each different 

training base in a flight university. Then a marginal analysis is used to generate the results, showing that 

the method is suitable and reasonable in this real life system. 

Introduction 

Modern equipments are designed increasingly complicated with more components. It placed bigger 

challenges to maintenance. Especially in aviation industry, the failures of key components will result in 

aircraft disruption if not having enough spare parts in stock. Due to long lead time in repair and transport, 

commercial airlines suffer from flight delay or cancellation, thus reduction of revenue and loss of 

reputation. While in aviation training industry, managing spare parts inventory also accounts for great 

importance. For example, at a flight university in China, downtimes of aircrafts will suspend normal 

flight training, which in turn delay many pilot students’ graduation. 

Over the last several decades, researchers and scholars have developed a great number of inventory 

models to deal with repairable parts problems. In 1966, Feeney and Sherbrooke [1] first formulated 

basic model to decide the level of single-item repairable parts inventory. Then Sherbrooke[2, 3] 

proposed a METRIC model for US air force to determine the backorders in a two-echelon inventory 

system. It’s the first approach to maximize the availability of equipments in a system-oriented way, and 

a variety of such models came out afterwards. Muckstadt [4] proposed MOD-METRIC model to 

control the inventory of service parts in a multi-echelon and multi-order environment. Then 

VARI-METRIC model was put forward by Slay[5]. These models are modified to better fit to real life 

multi-echelon systems. But some models can only be derived by approximated solutions because of 

increasing complexity of its functions. 

Problem Description 

The flight university established 60 years ago and is well-known as the largest civil aviation pilot training 

school in China. With the rapid development of civil aviation in China, the number of admitted pilot 

students has multiplied recently. After classroom training, students are sent to the airport training bases 

to fly on several types of coaching aircrafts. The types of aircrafts and their spare parts are not identical 

and don’t have commonality. For example, base X is the only one accounting for the university’s 

helicopter training, so this base holds all the helicopters the university purchased. So bases make their 

plan on spare parts individually. 

 In order to quick repair, upon failure of a particular spare part, maintenance staff will remove the 

defective one, isolate the failure and replace with another functioning part. These parts are referred as 

Line Replaceable Units (LRU). The immediate replacement can prevent aircrafts from disruptions 

caused by part failure to a certain degree. But it’s not the case if the demanding LRUs are out of stock. 

Under such circumstance, the defective LRUs are sent to the central repair shop in the university until 

they are recovered and back. In very rare conditions, the central repair shop is not able to recover the 
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failure and the LRUs whether need to be repaired in other qualified maintenance departments or directly 

scrapped and reordered in upstream suppliers. 

Among each aircraft type, some of the spare parts are attached great importance because its stock-out 

will deeply impact the flight dispatch decisions. These parts are called critical parts, having great 

stock-out cost (because downtimes of aircrafts render students from training) on the one hand, usually 

of high value and with long lead time on the other hand.  We can’t stock parts as many as possible 

because the total investment capital in LRUs is limited. The problem of allocating base stock for every 

item is traditionally treated individually by single item. It turned out to be inefficient because every item 

tends to have high stock levels.  

Modeling 

Considering all the factors aforementioned, a single location multi-item repairable parts inventory model 

can be applied to tackle the problem of allocating stock in each single base, regardless of the aircraft 

types. We choose a certain type of aircrafts, and there are many different kinds of spare parts are kept in 

stock. Only the critical spare parts, the failure of which could result in downtime of aircraft, are taken 

into consideration in this model.  

Notations. Denote set I as the item sequence number of LRU types, and I={1,2,…}. For example, 

LRUi stands for LRU of item number i. Other notations are defined as follows: 

 i  = the constant failure rate (or demand rate) for LRUi, 0i  

it   = the average repair and transport time (or lead time) for LRUi, 0it  

iS  = the base stock level for LRUi, waiting to be allocated in the model. 0iS  

ic  = the purchase price of LRUi, also viewed as investment cost, 0ic  

C  = the total cost used to invest in LRUs inventory. 

Assumptions. For convenience, the model is established on some fundamental assumptions: 

1. The failure process (or demand process) of each single item at the training base are Poisson 

processes with a deterministic rate and are mutually independent. That is to say, the number of defective 

spare parts that occurs in a certain period of time follows the identical and independent distribution 

(i.i.d.) of Poisson. 

2. The repair and transport processes (or lead time process) of each single item at the repair shop are 

i.i.d, too. 

3. The repair capacity is always sufficient to meet the demand of repairing. In classical models, 

researchers often assume the repair capacity is infinite for it’s convenient to estimate the number of jobs 

in system. Because the average queuing length is zero and number of jobs in system equals those in 

service. However, according to queuing theory, it proved that whenever the average repair rate is much 

faster than average demand rate, it is the case for the number of jobs in system. 

4. The base stock for LRUs is checked by a continuously-reviewed policy and replenished by a 

one-for-one policy.  The replenishment policy is known as the (S-1, S) strategy.  

5. Demand for a functional LRU from base stock is fulfilled immediately if available, otherwise it’s 

backordered. The time for removal and installation is ignored in this model. 

6. When defective parts are sent to repair, the service follows a first-come and first-service (FCFS) 

rule. After service, the spare parts are recovered as new. 

Objectives and Constraints. System Availability, statistically denoting the percentage of 

functioning equipments in given period of time, is often used to evaluate the reliability of systems. 

According to Sherbrooke’s research [2, 3], average system availability is closely related to the expected 

backorders. By reliability theory, assuming failures of each LRU on different aircrafts occur 

independently, an approximated equation of system availability A is obtained as: 
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In the equation, N denotes the number of aircrafts, and Zi denotes the number of LRUi installed on 

each aircraft. The equation can be simplified by taking logarithm on both sides: 
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According to the approximation, problems of maximizing the system availability are equivalent to 

minimizing the aggregate expected backorders. Considering the investment constraints described before, 

we put forward the objective function and constraints as: 
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It is a non-linear objective function subjected to a linear constraint. Because the decision variables are 

integral numbers, it is a nonlinear integral programming problem. 

Stock Balance Equation. In order to compute EBO, a fundamental stock balance equation is 

introduced by Sherbrooke.[2,3] It serves as the building blocks of the incoming analysis:  

BODIOHS                                                                                                                         (4) 

For notational convenience, Eq.4 omits index number i in every variable. Specifically, S denotes the 

base stock; OH denotes the number of LRUs on hand; DI denotes the number of LRUs due in for 

repair or transport; BO denotes the number of backorders. The stock balance equation reflects the 

dynamic balance of these importance variables. All variables are non-negative integrals. Under any 

circumstance, at least one of variables in OH and BO  must be 0. Table 1 demonstrates some of the 

possible integers these variables can take, as well as the corresponding probability concerning each 

incidence. 

 

Table 1  Possible integeral value and corresponding possibilities of OH , DI and BO  
 

Proabability OH DI BO 

P{DI=0} S 0 0 

P{DI=1} S-1 1 0 

P{DI=2} S-2 2 0 

P{DI=S-1} S-(S-1) S-1 0 

P{DI=S} 0 S 0 

P{DI=S+1} 0 S+1 1 

P{DI=S+2} 0 S+2 2 

 

Table 1 only shows part of the possible values of the variables. The table can go on by setting BO any 

positive integral number. According to the table, we can derive the expected backorders: 
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Expected BackOrders.The function of EBO is denoted by the variables of DI  and S. Because the 

failed parts arrive the repair shop by a Poisson process of intensity μi and stay in the repair system for an 

average time of ti, the steady-state distribution of of number of parts in this queing system is Poisson 

with mean μiti  by Palm’s Theorem[6]. That is to say, the pipeline of DI for each LRUi is a Poisson 

distribution with mean iit , then: 
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The Eq.4 can be further simplified as: 
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The equation has only one decision variable S. 

The optimazation of  EBO under investment constrain can be generated by marginal analysis in the 

coming sections. The basis for the use of marginal analysis is the deceasing feature and the convexity of 

EBO. 

It can be proved that the function of EBO is decreasing and convex for all S in its domain because: 

,...}2,1,0{,0}{)()1()(
1

 




SxDIPSEBOSEBOSEBO
Sx

                                    (9) 

,...}2,1,0{,0}1{)()1()(2  SSDIPSEBOSEBOSEBO                                 (10) 

Eq. 9 indicates the function of EBO is decresing for S. A single unit of increase in S leads to a 

decrease in EBO. While Eq.10 indicates the degree of every single decrease in EBO by increasing S is 

gradually reduced. 

Marginal Analysis. When it comes back to the objective function and constraints of our problem, a 

usual and classic solution is marginal analysis. Alternative optimazation techniques include so-called 

greedy algorithm (actually a systematic way of marginal analysis), Lagrangian Relaxation, and 

Dantzig-Wolfe Decomposition. However, marginal analysis is preferred in this model for it’s concise 

and convenient to use in small system. The procedures of marginal analysis are: 

Step 1: Set every 0iS as a feasible solution for the problem. At this time, compute the original 
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Step 2: Choose the item of LRUs best worth being increased by one unit, which will lead to the 

greatest decrease in its EBO. Specifically, 

set 
i

i
i

c

SEBO )(
 , and choose the item k for }max{arg ik  . 

Increase the amount of kS  by 1 unit. 

Step 3: Compute the objective and check constraint for new feasible solutions. If the investment of 

total captial constraint is met, stop computation and we will get the lowest possible expected backorder 

under certain investment constraint; Otherwise go back to step 2. 

Application to the case of training base’s aircrafts 

Now a single training base of the flight university, have 3 critical items of LRUs in a particular type of 

aircraft in stock. Planning departments try to establish the base stock for the LRUs under a total capitol 

investment constraint of 330,000 yuan. In order to both ensure safety and make best use of aircraft, we 

apply the upper model.  

First we gathered historical data of parts failure and its repair service to get parameters of average 

arriving rate μi and average repair time ti  for each item of LRU. These data are demonstrated in Table 

2, together with purchasing prices ic
 for new LRUs. 

 

Table 2  Pararameters of failure parts arrival/service/purchasing price for LRUi 

 

Parameter LRU1 LRU 2 LRU 3 

μi  (unit/year) 5  0.5 6  

ti (year) 0.4  1 0.5 

ci  (10,000 yuan) 4 2 6 
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Then, we compute the expected backorders EBO(Si=0) for each LRUi as the first set of results under 

feasible solutions of Si=0, awaiting further improvement. Following the steps of marginal analysis, we 

continnue to compute the related parameters such as )( iSEBO and i  to decide the next item of LRU 

to be increased in quantity. Repeat the steps and stop the algolorithm until constraint is met, finally we 

can get data as showed in Table 3. 
 

Table 3  Results of marginal analysis in each step 
 

Iteration τ1 τ2 τ3 S1 S2 S3 ∑EBO(Si) ∑ciSi 

0 - - - 0 0 0 5.5  0 

1 0.216

175 

0.196750 0.158367 1 0 0 4.6353 4 

2 0.148525 0.045100 0.133467 2 0 0 4.0412 8 

3 0.080875 0.007200 0.096117 2 0 1 3.091 14 

4 0.035775 0.000900 0.058767 2 0 2 2.2902 20 

5 0.013225 0.0001105 0.03075 2 0 3 1.7135 26 

6 0.010218 0.0000... 0.00553 2 0 4 1.3609 32 

 

At Step 6, we have to stop the analysis since the total capital investment in LRUs has risen up to 

320,000 yuan. The left 10,000 is not enough to buy any single unit among the 3 items. The set of 

optimal solutions in the question is obtained as {S1=2, S2=0, S3=4}. The agregate expected number of 

backorders EBO has been improved by 6 times in investing 2 units on LRU1 and 4 units on LRU2 from 

the orginal feasible solutions.  

Conclusions 

In this paper, we give a thorough introduction of classic single location, multi-item model frequently 

applied in spare parts inventory control. The model then is employed to deal with the problem from a 

training base in a flight university. Obviously it is superior to conventional methods, most of which view 

the inventory optimization in an isolated single-item way. In future research, there are several directions 

to follow to deeply study the case. Firstly, for convenience, we only take 3 critical LRUs in the research 

to compute. However, there are actually hundreds of thousands items of LRUs to be considered on their 

base stock levels in forecasting and decision-making scenarios. Optimization techniques in large-system 

problem can be introduced. Secondly, the problem can be extended and studied in a multi-echelon or 

multi-indenture inventory system in the future. 
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