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We study an interactive linear model that incorporates investigator and/or supervisor interventions in the context
of a two-stage sampling design. We obtain an unbiased estimator of the finite population total and derive an
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stage cluster sampling design.
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1. Introduction to Sampling Design, Survey Design and Interactive Linear Model

The general models for variability in the literature are expressed either as a mean squared error
decomposition model or as a linear model [Lessler and Kalsbeek (1992)]. The net bias is assumed
to be zero, so that the models deal only with variability. The major difference between the two
types of models is that the decomposition model approach often has a component attributable to the
interaction between sampling and measurement errors, whereas the linear model approach omits
this component. Here, we adopt a linear model approach, and we assess a direct response on a
quantitative variable ¥ measured on selected units from a finite, labeled population of size N.

Of course, in actual surveys, we need investigators and/or supervisors as well. We consider a
situation wherein there are possibilities of investigators’ and/or supervisors’ intervention(s) on the
response profiles ultimately received by the data collection agency. As in Sinha and Maiti (2014),
we assume that these intervention effects are random with mean 0, and they are non-interactive both
within and between the data collection and the data handling personnels. The problem is to unbias-
edly estimate the finite population total of the response variable Y based on a two-stage sampling
design which is administered in a situation wherein the above two types of random interventions are
likely to be present. When the target population is not of the type discussed here, the mean squared
error decomposition model can be utilized profitably.
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1.1. Sampling design

To fix ideas, let us assume that all N population units are grouped into M clusters of size L each
(thatis, N = ML). An SRSWOR(M,m) design is applied to the M clusters in the population to select
m clusters, followed by SRSWOR(L,[) designs applied simultaneously to all selected clusters. For
example, suppose that we have a finite population of N = 2800 respondents who are grouped into
M =170 clusters of L =40 respondents each. A random sample of m = 7 clusters is chosen following
a fixed size sampling design, say, for example, an SRSWOR(70,7) design. This is followed by
simultaneous (but independent) applications of SRSWOR(40, 10) designs to the 7 selected clusters.
Thus, altogether 70 ultimate respondents are selected from the 7 clusters (each contributing / = 10
units) by a two-stage sampling design.

1.2. Survey design

Let there be ¢ investigators and s supervisors engaged in the process of data collection and super-
vision whose interventions are likely to be present and must be accounted for. We introduce an
allocation matrix of order t x m to describe the assignment of ¢ investigators to the m sampled clus-
ters. We also introduce another allocation matrix of order s X ¢ to describe the nature of supervisor-
investigator ‘dual checks’ on the cluster-based respondent profiles. While proposing these two types
of allocation matrices, we may take recourse to some ‘nice’ combinatorial structure such as a BIBD.
The important point to be noted is that each cluster-based respondent’s profile should be collected
by more than one investigator and then the profile must be checked by at least one supervisor.

In the illustrative example above, let us label the m = 7 selected clusters as I to VII. Further sup-
pose that there are ¢ = 7 investigators and s = 2 supervisors. The 7 investigators are assigned to the 7
selected clusters using a symmetric BIBD(7,7,3,3, 1) generated from the initial set (1,2,4) accord-
ing to Bose’s technique [Bose (1939)]. Supervisor 1 oversees Investigators 1-4, and Supervisor 2
oversees Investigators 4—7. In particular, both supervisors oversee Investigator 4. These allocation
matrices are given in the Appendix. The resulting survey design is as follows:

Assigning investigators and supervisors to selected CRUs
CRU i | (j,k) combination of Investigator-Supervisor
1 (1, 1:;(5,2):(7,2)
I (1, 1); (2, 1); (6,2)
I 2,1);3,1);(7,2)
IV 1 (1, 1 G, D (4, 1); (4, 2)
Vo2 D4 1);(4,2);5,2)
VI (3, 1); (5,2); (6,2)
VII | (4, 1); (4, 2);(6,2);(7,2)

Since, the cluster sizes are all equal (/ = 10), we ignore the cluster size effect, and treat each cluster
as a composite respondent unit (CRU).

1.3. Data accrued from the field

Denote by i a CRU in the first-stage sample of size m clusters and by S[i], the number of schedule
based observations collected on the particular CRU. Naturally S[i] is based on the survey design
used for this CRU in combination with the scheme of involvement of investigators-supervisors. Let
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us define I[i : (j,k)] = 1, if Investigator j and Supervisor k& have both worked on collecting and
checking information from CRU i; and otherwise, I[i : (j,k)] = 0. Then, clearly

S[i] =Z; T 1li = (4, k)]

Whenever I[i : (j,k)] = 1, we denote by Yj.(jx) the underlying (true, but unobserved) total
response on the study variable ¥ from CRU i. Without any intervention effect on the part of the
investigators/supervisors and without any measurement errors, the different readings on Y};.(; s for
each cluster i would only vary due to second-stage sampling. But in reality, we are usually faced
with possible intervention effects, measurement errors in addition to second-stage sampling vari-
ation. So, we denote by f/[,-:( jk) an estimate of Yj;.(;x) based on a second-stage sampling scheme
obtained by inverstigator-supervisor combination (j, k). Indeed, given that 10 units are selected out
of 40 units within CRU i based on a SRSWOR design, the cluster total is estimated by

f/[l-:(j_’k)] = 4 x the sample total of 10 Y-values, given that{I[i: (j,k)] =1}
This is the important point of departure of the present paper from Sinha and Maiti (2014). Whereas
in the case of a single-stage cluster sampling Yj;.(; 1) are readily available, in the case of a two-stage
sampling design we must estimate these quantities by utilizing second-stage sampling designs.

In our illustrative example above, we have altogether 24 data points {f/[i:( oy A (G k)] =1}
with cluster-wise frequencies (3,3,3,4,4,3,4). These 24 observations are used to fit the interactive
linear model developed in the next subsection.

1.4. Modelling f/[i:( j k) whenever {I[i: (j, k)] =1}

Our primary objective is to examine the effects of interventions by one or the other or both sources
of intervention, and also account for measurement error in order to provide a valid estimate of the
population total along with its standard error, based on two-stage sampling. Towards that end, let us
postulate a linear model for 17[,:(1 .1)]- Similar models also apply for all other f/[l-:( L

Y[IZ(LI)] = TR[ + IR, +15 +e[13(171)} (1.1)

where TRy is the estimate of true total response TR; of CRU I based on two-stage sampling, IR is
the intervention effect of the Investigator 1, IS is that of the Supervisor 1, and the last term is the
error. We assume that the error and the intervention effects are all randomly distributed with means
0 and variances 672, GIZR, Gfs respectively, while all pairwise effects/interventions are uncorrelated.
Let ¥; denote the (simple) average of the S [i] estimates of total Y-value corresponding to CRU i

submitted to the agency by various investigator-supervisor combinations. That is,
o _ T TG 1l (o k)]
Sli]

In view of the model assumptions, we have

(1.2)

Ey(Y;.)=TR; fori=1,2,...,7 (1.3)
where Ejy is the expectation under the adopted model. Furthermore, due to second stage sampling,
E, (TR) =TR;; fori=1,2,...,7 (1.4)

where Ej is the expectation under second stage sampling.
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2. Estimator of Population Total T, its Expectation and Variance

We use the conventional Horvitz-Thompson estimator (HTE) to obtain an unbiased estimate of the
population total T'(TR), the total true response under the two-stage sampling scheme; that is,

R Y,
T(TR) :Z;j, (2.1

ies M

where 7; is the inclusion probability of CRU i during first-stage sampling. Let E, E1, E; and Ey|y
denote respectively the expectations with respect to overall sampling design, the first- and the
second-stage sampling designs, and the conditional expectation with respect to the second-stage
sampling design given the first-stage sampling design. Then using (1.3) and (1.4), we have

2.2)

where TRy; is the true Y-value of the A-th unit in the second-stage sample from CRU i, and 7; is
the inclusion probability of that unit in the second-stage sample.

Remark 2.1 In the above (2.1) and (2.2) represent the most general expressions of the estimators of
population total and the CRU totals for arbitrary first-stage and second-stage sampling designs.

Let us now study the variance of the estimator of population total given in (2.1). Let Vs, V1, V>
and Vs denote respectively the variances with respect to overall sampling design, the first- and the
second-stage sampling designs, and the interactive linear model. Also let Covys denote the model
covariance. Then, under any fixed sample size design [see, for example, Hedayat and Sinha (1991)],
we have

V(T (TR)) = VsEy <Z I;) +EsViy (Z ’;) (2.3)

ies ‘" ies ‘"
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Simplifying the first term on the right hand side of (2.3), and using (1.3) and (1.4), we have

VeEy (;Z) =Vs (; Z&)
(£ 1) s (2.2)
L (Z Tg) ik (Z Vz(ﬂTR ))

-yy (- |

i<i

2
V TR
> Tty — Ty )+ Y, —— 2 (2.4)

where ;7 denotes the joint inclusion probability of CRU i and CRU ' in the first-stage sample. The
last sum on the right hand side of (2.4) involves summands with numerators of the form

2
) (ﬂlz\iﬂh'\i - 7Thh'|i)

TRy TRy,

Tp)i Ty i

v (1R)= T ¥ (

where 7;,,|; denotes the joint inclusion probability of units / and ' in the second-stage sample from
CRU i. Note that V, (TR,-)) can be unbiasedly estimated by

2 il — /i
Vs (TR,)) _ Z Z <TRhi . TRhH') <7Th|17rh li = Thi z> (2.5)

heal’ Tp)i Ty i Ty |i

Likewise, the second term on the right hand side of (2.3) evaluates as

) o[ (3) 3

ies i#i

Covy (Y., Yy
= Ejg [Z Z Z OVMn', Ty )] 26)

i il

The model variances and covariances in (2.6) are computed by pre- and post-multiplying the covari-
ance matrices (given in Section 3) between vectors (of length S[i] and S[i']) of all estimates of totals
within CRU i and CRU {’ obtained by respective (j,k) combinatons, by suitable coefficient vectors
(determined by the adopted convention) given in Section 4.

3. Computations of Model-based Variances and Covariances

Since every CRU is viewed as a cluster of 10 second-stage units chosen from 40 availabule units, the
response on each ‘cluster unit’ is four times the sum of the responses of the constituent members of
the second-stage sample. Further, since there are three data points for the responses within CRU [/
(as collected independently by the three investigators 1, 5, 7), we take the average of the three
responses and use this as a representative figure, denoted by ¥; . This we do for all other CRUs as
well. In view of the model assumptions, EM(Y,) = TR;; fori= 1,2,...,7. Note that, because these
10 units are selected according to a fixed-size sampling design SRSWOR(40, 10), T'R; is random.
Whenever investigator and/or supervisor interventions are likely to be present and are to be
accounted for, investigators and supervisors are allocated to the sampled cluster units as described

471



£

ATLANTIS
PRESS Journal of Statistical Theory and Applications, Vol. 16, No. 4 (December 2017) 467-475

in Subsection 1.2. Since the two allocation matrices (for investigators and supervisors) are chosen in
advance, the variance and the covariance computations underlying the interaction model will remain
the same for all choices of the m clusters, except for their identification in terms of cluster labels.
For example, if the randomly selected respondent clusters are labeled [3, 17, 33, 41, 57, 63, 69],
then the above expressions for model-based variances and covariances correspond to the cluster in
the order mentioned. In other words, }; ; in effect corresponds to } 3 3; Y7 ;7 corresponds to Y17 173
Y ;11 corresponds to Y3 17; and so on. The realized cluster labels in ascending order replace the
labels 1,11,...,VII.

Computations of the model-based variances and covariances are quite laborious (though
straight-forward). These are already developed in Sinha and Maiti (2014). As an illustration, we
show Y; ;;, which stands for the 3 x 3 covariance matrix between the two random vectors f’m and
Y[H] each of length 3 (because three (j,k) combinations worked on CRU I and three on CRU /7):

o Sik + Ofs Ojs 02
ZI,H = Covy (¥, ¥)) = 0 0 oy
0 0 o5

Likewise, we obtain all other }; » = Covy (f’m , f/[,v]).
The differences between the single-stage cluster sampling design and the two-stage sampling
design in the context of interactive linear model is described fully in the Appendix.

4. Data Analysis

We will now discuss the essential features of data analysis for unbiased estimation of the finite
population total 7(TR) of the study variable ¥ under the above interactive linear model. We need
to differentiate between two distinct scenarios as was done in Sinha and Maiti (2014):

(i) Blinded Submission
(i1) Unblinded Submission

The above two cases refer to the different scenarios of submitting the response profiles to the super-
visors. In the blinded case, each supervisor treats each response profile as a separate, isolated docu-
ment without the knowledge of which CRU it was reorded on and by whom. In the unblinded case,
the supervisor receives also the identity of the CRU and the interviewer/investigator along with the
response profiles. We will study both scenarios in this paper.

4.1. Data analysis under blinded submission

In a very general set up, we consider a finite, labeled population of N units; and we take recourse
to a two-stage design as mentioned earlier in Section 1. Because of possible investigator and/or
supervisor interventions, the response may be distorted; and we account for this distortion by stipu-
lating an interactive linear model described in (1.1). In view of (1.3), a model-unbiased estimation
of cluster total is ensured. Thereafter, we use the conventional Horvitz-Thompson estimator of the
population total under two-stage sampling design as mentioned in (2.1). An expression for the vari-
ance of T'(TR) has been given in (2.3)—(2.6). In the next paragraph, we discuss how to estimate the
variance of 7 (TR).
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The exact computation of EsVjs(e) is quite involved. However, an unbiased, sampled CRU
based estimator of EsV),(e) is simply given by Vy,(e), assuming that the three variance components
GIZS, O/, 02 are known. Likewise, computing an unbiased estimate of VsEy/(e), by substituting (2.5)
in (2.4), would be trivial if the true values of the sampled cluster totals were known. But since the
true values are not known, one can make use of ¥; in place of TR;.

Finally, the coefficient vector corresponding to CRU i is of the form (1,1,...,1)/S[i], and is of
length S[i] (because the simple average ¥;. gives equal weight to all S[i] components). Thus, under
the assumption of known variance components, we construct the variance estimator.

4.2. Data analysis under unblinded submission

Suppose, for example, that I[i; (j,k)] = I[i; (j/,k)] = 1. That is, Supervisor k has to handle two sep-
arate response profiles of the same CRU i submitted by Investigators j and j’. Therefore, under
unblinded submission, it makes good sense for Supervisor £ first to average out these two measure-
ments on the same CRU i, and then provide his/her own ‘input’ to that average before forwarding
the response to the agency! In constrast, under blinded submission, the supervisor’s input was incor-
porated separately for each response profile submitted to him/her, since the CRU identity was not
known to the supervisor.

Continuing the same example as before, but now assuming unblinded submission, we apply the
aforementioned scheme of ‘averaging’ multiple responses from the same CRU as follows:

View = [V + Vs + Y001 /2] /2= 2V 00y + Vs )+ Vi) ] /4

Vieew = [V + Yo} 2+ Vo)) /2 = Vg + Ve + 2V /4
Viree = [V + Y Y2+ Yiura )] /2= e + Yurea +2Yue¢.2)] /4
Yvee = [Tv.an + v v} /3 4+ Yvan ] /2

= v.an) v+ Yor@n + 3@z /6
Yy = [{f/v:(z,l) +?v:(4,1)}/2+ {f/v:(zt,z) +f/v:(5,2)}/2] /2
= [f/v:(m) + f/v:(471) + f/v:(472) + I?\/:(572)] /4
Yy = [f’vz:(&,l) + {f/w:(s,z) +?VI:(6,2)}/2] /2= [2f/v1:(3,1) +f/v1:(5,2) +?VI:(6,2)] /4
Yyir = [Yvn 4.1) +{Yyu. 42)+?v11 (62)+)A]VII 72)1/3] /2
= BY%iran + Yirao) + Yo + Yvira o)) /6

Essentially, the simple averages ¥; in the case of blinded submission are replaced by the
weighted averages Y, in the case of unblinded submission. Next, we need to compute the variances
and the covariances of the resulting input averages from all seven CRUs. This was considered earlier
in Sinha and Maiti (2014), and the expressions for the variances and the covariances were derived.
Indeed, the coefficient vectors needed to evaluate the variances and covariances corresponding to
CRU i (of length S[i]) and CRU ¢ (of length S[i']) are readily seen from the above expressions of
weighted averages V...

As we see it, the non-trivial problems are those of variance estimation in such models
with/without two-stage sampling design. We hope to venture further in this area of research.

Remark 4.1 Extension to a two-stage design calls for natural generalization of results in a single
stage design, which we have provided here.
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Appendix A. Appendix: Details of Sampling, Interventions, Modelling and Analysis
A.l. Sampling design

(i) The population consists of N = ML units, grouped into M clustes of L units each. An
SRSWOR(M,m) design is used to select m clusters out of M clusters in Stage 1, followed
by SRSWOR(L,I) designs to select / units out of L units within each selected clusters in
Stage 2, resulting in n = m/ ultimate respondents.

(ii) The data consist of m selected clusters, and S[i] estimates of total Y -response from CRU i
collected by the investigators, modified by the supervisors and received by the agency.

A.2. Survey design

To each selected CRU, investigators and supervisor(s) are assigned using Tables 1 and 2. The
investigator-supervisor assignments within each selected CRU is shown in Subsection 1.3.

Table 1. Assigning investigators to selected CRUs
based on BIBD(7,7,3,3,1)

CRU I oI mu v v VI VI
Invest.
1 * * *
2 *
3 * *
4 * * *
5 * *
6 * *
7 * *

Table 2. Assigning two supervisors to over-
see seven investigators

Invest. | 1 2 3 4 5 6 7
Super.

1 * % k%

2 * %k * %
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A.3. Estimated total Y -response based on second-stage sample from CRU i

IA/[,-:( k)] = L-Vji(j x> Where Y. 1)) 1s the second-stage sample average obtained after interventions
by Investigator j and Supervisor k; and L is the number of second-stage units within each CRU i.

A.4. Modelling
Model under Single-Stage Sampling:

Yie(ja) = TRi + IR + ISk + ey p)]
Model under Two-Stage Sampling:

Vi(jay) = TRi +IR; + 1S+ e )

A.5. Estimated TR within CRU i
Under Single-Stage-Sampling:
Y XYl (k)]

R = e Y1l Gok)]

Under Two-Stage Sampling:

Yo Y Yiadlic (k)]
Y Lilliz(j,6)]

TR;

A.6. Expectation of estimated TR within CRU i reported by (j,k) combination
E (Viiju)) = EsEn (Yijao1) = EmEs (Vi) = Em (Vi) = TRi

A.7. Expectation of estimated TR within CRU i
E(TR;) = EsEy (TR;) = EyEs (TR;) = Ey (Y..) =TR;

A.8. Variance of estimated TR within CRU i reported by (j,k) combination

Vi (Vi) = Oir+ 075+ 07
V (Pligiwn) = VsEm (Figju) + EsVir (Vi)
= Vs (TR;) + Es (o3 + 075 + 07)
= Vs (TR)) + (ofx + 02 +67)

A.9. Variance and covariance of estimated TR within CRU i

Under Single-Stage-Sampling:
The expressions for V (TR;) and Cov (TR;, TR;) are worked out in Sinha and Maiti (2014).
Under Two-Stage-Sampling:

V(TR;) = VsEm(-) + EsVu(-)

The first term on the right hand side, VsEj(+), reduces to the variance in a two-stage sampling, and
the second term, EgVj (), is the same as in Sinha and Maiti (2014).
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