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1. Introduction

Adding extra parameter to an existing family of distributions is very common in the statistical
distribution theory in order to introduce more flexibility. For example, Azzalini (1985) introduced
the skew-normal distribution by introducing an extra parameter to the normal distribution. Azzalini
(1985)’s skew normal distribution takes the following form (for λ ∈ ℜ)

f (x;λ ) = 2ϕ(x)Φ(λx),

where ϕ(x) and Φ(x) are the probability density function (PDF) and cumulative distribution func-
tion (CDF) of a standard normal distribution, and λ is the skewness parameter. Although Azzalini
introduced this method mainly for normal distribution, but it can be easily used for other symmetric
distributions.

Marshall and Olkin (1997) proposed a general method for generating a new family of distribu-
tions in terms of the survival function as

Ḡ(x;α) =
α F̄(x)

1− ᾱF̄(x)
; x ∈ ℜ, α > 0,

where ᾱ = 1−α and F̄(x) = 1−F(x). For more details on lifetime distributions one may refer to
Marshall and Olkin (2010) and Lai (2013).
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Eugene et al. (2002) introduced beta generated family of distribution, where the beta distribution
is used as a generator. The CDF of beta generated family is given by

G(x) =
∫ F(x)

0
b(t)dt,

where F(x) is the CDF of any random variable.

Alzaatreh et al. (2013) introduced a new method for generating families of continuous distribu-
tions called the T-X family by replacing the beta PDF with a PDF, r(t), of a any continuous random
variable and applying a link function W (·) that satisfies some specific conditions.

Recently, Aljarrah et al. (2014) used the link function W (·) to be the quantile function (QF) of
a random variable Y to generate the so-called T-X{Y} family. Alzaatreh et al. (2014) unified the
notations of the T-X{Y} family as follows: Let T , R and Y be the random variables with CDFs
FT (x) = P(T ≤ x), FR(x) = P(R ≤ x) and FY (x) = P(Y ≤ x), respectively. The corresponding QFs
are QT (p), QR(p) and QY (p), where the QF is defined by QZ(p) = inf{z : FZ(z) ≥ p}, 0 < p < 1.
If the densities exist, we denote them by fT (x), fR(x) and fY (x). Further, we consider the random
variables T ∈ (a,b) and Y ∈ (c,d) for −∞ ≤ a < b ≤ ∞ and −∞ ≤ c < d ≤ ∞. The CDF of the
T-R{Y} class is defined by

FX(x) =
∫ QY (FR(x))

a
fT (t)dt = P

[
T ≤ QY

(
FR (x)

)]
= FT

(
QY
(
FR(x)

))
. (1.1)

The PDF and hazard rate function (HRF) corresponding to Equation(1.1) are, respectively, given
by

fX(x) = fR(x)
fT

(
QY
(
FR(x)

))
fY
(

QY
(
FR(x)

)) (1.2)

and

hX(x) = hR(x)
hT

(
QY
(
FR(x)

))
hY

(
QY
(
FR(x)

)) . (1.3)

Remark 1.1. If X follows the T-R{Y}, then

(i) X d
= QR

(
FY (T )

)
,

(ii) QX(p) = QR

(
FY
(
QT (p)

))
,

(iii) if T d
= Y , then X d

= R, and

(iv) if Y d
= R, then X d

= T .

If T follows the Lomax distribution, then the T-R{Y} family in (1.1) reduces to the Lomax-
R{Y} family. In this paper, we study some general properties of the Lomax-R{Y} family. The
rest of the paper is organized as follows. In Section 2, we define this family. In Section 3, we
study some of its general properties. In Section 4, we consider a member of the family, namely the
Lomax-Weibull{log-logistic} distribution, and obtain some of its structural properties. Parameter
estimation and simulation study are discussed in Section 5. In Section 6, we prove empirically the
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usefulness of this distribution to censored and uncensored real-life data sets. Finally, Section 7 offers
some concluding remarks.

2. The Lomax-R{Y} family

Let T be a Lomax random variable with PDF fT (x) = k (1+ x)−k−1 and CDF FT (x) = 1−(1+ x)−k,
then the CDF of the Lomax-R{Y} family is defined from Equation(1.1) by

FX(x) = 1−
[
1+QY

(
FR(x)

)]−k
, (2.1)

then the PDF corresponding to (2.1) is given by

fX(x) =
k fR(x)

[
1+QY

(
FR(x)

)]−k−1

fY
[
QY

(
FR(x)

)] . (2.2)

Equation (2.1) has a very easy mathematical interpretation, since it is just the Lomax cdf evalu-
ated at the transformed point QY (FR(x)) for any positive random variable Y , holding for any other
random variable R. Note that the CDF (2.1) and the PDF (2.2) have closed-forms when QY and FR

have closed-forms. Further, the Lomax-R{Y} family has some advantage in terms of its applicabil-
ity as shown in the data examples presented later.

The HRF of the Lomax-R{Y} family reduces to

hX(x) = hR(x) ×
k
[
1+QY

(
FR(x)

)]−k

hY

[
QY

(
FR(x)

)] . (2.3)

The Lomax-R{Y} family in Equation(2.2) can generate several extended Lomax classes. Table
1 gives some subclasses of the Lomax-R{Y} family.

Table 1. Some Lomax-R{Y} classes based on different choices of the random variables R and Y .

S.No. Y QY (p) CDF of the Lomax-R{Y}

(a). Log-logistic α( p
1−p)

1/β ,α,β > 0 1−
{

1+α
[

FR(x)
1−FR(x)

]1/β}−k

(b). Weibull γ
{
− log(1− p)

}1/c
, γ,c > 0 1−

{
1+ γ

[
− log(1−FR(x))

]1/c}−k

(c). Exponentiated- − 1
θ log(1− p1/α), α,θ > 0 1−

{
1− 1

θ log
[
1− (FR(x))1/α

]}−k

exponential (EE)

(d)†. Exponential − log(1− p) 1−
{

1− log[1−FR(x)]
}−k

Note: The Lomax class† in Table 1 has recently been studied by Cordeiro et al. (2014).

Theorem 2.1. The PDF of the Lomax-R{Y} family can be expressed as

fX(x) =
∞

∑
i=0

bi+1 πR,i+1(x), (2.4)
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where πR,i+1(x) = (i+ 1)FR(x)i fR(x) is the exponentiated-FR (exp-FR for short) density function
with power parameter (i+ 1) and the coefficients bi+1’s depend on the parameters of the Lomax
and the distribution of Y .

Proof. Based on the generalized binomial expansion, we can write (2.1) as[
1+QY

(
FR(x)

)]−k
= 1+

∞

∑
n=1

(−1)n [k]n
n!

QY

(
FR(x)

)n
,

where [k]n = k(k+1) . . .(k+n−1) is the ascending factorial. Then,

FX(x) =
∞

∑
n=1

(−1)n+1 [k]n
n!

QY

(
FR(x)

)n
. (2.5)

If the QF, QY (u), does not have a closed-form expression, this function can usually be expressed as
a power series of the form

QY (u) =
∞

∑
i=0

ai ui, (2.6)

where the coefficients a′is are suitably chosen real numbers depending on the parameters of Y .
For several important distributions such as the Weibull, log-logistic, exponentiated-exponential and
exponential (listed in Table 1) and the normal, Student-t, gamma and beta distributions, among
others, QY (u) can be expanded as in Equation (2.6).

By application of an equation in Section 0.314 of Gradshteyn and Ryzhik (2000) for a power
series raised to a positive power, we can write from (2.6) for any n positive integer

QY (u)n =

(
∞

∑
i=0

ai ui

)n

=
∞

∑
i=0

cn,i ui , (2.7)

where (for n ≥ 0) cn,0 = an
0 and the coefficients c′n,is (for i = 1,2, . . .) can be determined from the

recurrence equation

cn,i = (ia0)
−1

i

∑
m=1

[m(n+1)− i]am cn,i−m.

The coefficient cn,i can be evaluated numerically in any algebraic or numerical software.

Combining equations (2.5) and (2.7), we obtain

FX(x) =
∞

∑
i=0

bi FR(x)i , (2.8)

where (for i ≥ 0) bi = bi(k) =
∞

∑
n=1

(−1)n+1 [k]n
n!

cn,i.

Now differentiating equation (2.8), we can write the PDF of T as

fX(x) =
∞

∑
i=0

bi+1 πR,i+1(x),

where πR,i+1(x) is defined above. �
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Equation (2.4) reveals that the density function of the Lomax-R{Y} family is a linear mixture of
exp-FR densities, where the coefficients are functions of the parameters of the Lomax and the distri-
bution of Y . Thus, some mathematical properties of this class such as the ordinary and incomplete
moments and generating function can be determined by knowing those of the exp-FR distribution,
which have been investigated by some authors for several baseline distributions.

3. Some properties

In this section, some general properties of the Lomax-R{Y} family are investigated. The following
Lemma gives the relationships between the random variables R and Y for some cases, which can be
used to simulate the random variable X from the random variable T .

Lemma 3.1. (Transformation): For Lomax random variable with PDF fT (x), the random variable:

(i) X = QR

(
1+(T

α )
−β
)−1

follows the Lomax-R{log-logistic} class in Table 1 (a),

(ii) X = QR

(
1− e−(T/γ)c

)
follows the Lomax-R{Weibull} class in Table 1 (b),

(iii) X = QR

(
1− e−θ T

)α
follows the Lomax-R{EE} class in Table 1 (c).

Remark 3.1. The following results are obtained from equations (2.1) and (2.2):

(a) The QFs for the (i) Lomax-R{log-logistic}, (ii) Lomax-R{Weibull} and (ii) Lomax-R{EE}
classes are given by:

(i) QX(p) = QR

(
1+(QT (p)

α )−β
)−1

,

(ii) QX(p) = QR

(
1− e−(QT (p)/γ)c

)
,

(iii) QX(p) = QR

(
1− e−θ QT (p)

)α
,

respectively, where QT (p) = (1− p)−1/k −1.

(b) The modes of the Lomax-R{Y} classes are the solutions of the equation

x =
f ′R(x)
fR(x)

−Q′
Y

(
FR(x)

){ k+1

1+QY

(
FR(x)

) +
f ′
(

QY
(
FR(x)

))
f
(

QY
(
FR(x)

))
}

fR(x).

(c)

E(X r) = ET

{[
QR

(
FY
(
T
))]r}

.

The Shannon’s entropy of the Lomax-R{Y} family is given in the following theorem.

Theorem 3.1. The Shannon’s entropy of the Lomax-R{Y} family can be expressed as

ηX = log
(

1
k

)
+ηR +(k+1)E

[
log
{

1+QY

(
FR(x)

)}]
+E

[
log
{

fY
(

QY
(
FR(x)

))}]
. (3.1)
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Corollary 3.1. The Shannon’s entropies for the (i) Lomax-R{log-logistic}, (ii) Lomax-R{Weibull},
and (iii) Lomax-R{EE} classes are, respectively, given by

(i) ηX = log
(

β
k

)
+ηR −

(
1−β

β

)
E
[

log FR(x)
]
−
(

1+β
β

)
E
[
− log

(
1−FR(x)

)]
+(k+1)E

{
log
[
1+
( FR(x)

1−FR(x)

) 1
β
]}

,

(ii) ηX = log
(

c
γc k

)
+ηR +(k+1)E

{
log
[
1+ γ

(
− log

(
1−FR(x)

)) 1
c
]}

+(c−1)E
[

log
{

γ
(
− log

[
1−FR(x)

]) 1
c
}]

−E
[
− log

(
1−FR(x)

)]
,

(iii) ηX = log
(

θα
k

)
+ηR ++(k+1)E

{
log
[
1+ log

(
1− [FR(x)]

1
α

)− 1
θ
]}

+E
{

log
[
1−
(
FR(x)

) 1
α
]}

+

(
α −1

α

)
E
[

log
(
FR(x)

)]
.

4. The Lomax-Weibull{Log-logistic} distribution

Based on Table 1 (a), the PDF of the Lomax-R{log-logistic} class is

fX(x) =
kα
β

fR(x)

[1−FR(x)]
2

[ FR(x)
1−FR(x)

] 1
β −1
{

1+α
[ FR(x)

1−FR(x)

] 1
β
}−k−1

. (4.1)

Remark 4.1. From (4.1), we have:

(i) When x →−∞, fX(x)∼ kα
β fR(x) [FR(x)]

1
β −1,

(ii) When x → ∞, fX(x)∼ k
αkβ fR(x) [1−FR(x)]

k
β −1.

Next, we provide some properties of a special case of (4.1), the Lomax-Weibull{Log-logistic}
(for short, LW{LL}) distribution. We eliminate the redundancy of the scale and shape parameters
by setting α = 1.

If a random variable R has the Weibull distribution, then, the PDF and CDF of the LW{LL}
distribution are, respectively, given by

f (x) =
k c
β γ

(
x
γ

)c−1

e(x/γ)c
[
e(x/γ)c −1

] 1
β −1{

1+
[
e(x/γ)c −1

] 1
β
}−k−1

(4.2)

and
F(x) = 1−

{
1+
[
e(x/γ)c −1

] 1
β
}−k

. (4.3)

Equation (4.3) is a generalization of the Weibull distribution. Clearly, this CDF reduces to the
Weibull CDF when β = k = 1.

Remark 4.2. For the LW{LL} distribution, we have:

(i) When x → 0, fX(x)∼ kc
βγ

(
x
γ

)c−1
[

1− e−
(

x
γ

)c] 1
β −1

,

(ii) When x → ∞, fX(x)∼ kc
βγ

(
x
γ

)c−1
e−

k
β

(
x
γ

)c

.
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Henceforth, a random variable having the PDF (4.2) is denoted by X ∼ LW{LL}(k,β ,c,γ).
From (4.2) and (4.3), the HRF of X , say h(x), is given by

h(x) =
k c
β γ

(
x
γ

)c−1

e(x/γ)c
[
e(x/γ)c −1

] 1
β −1{

1+
[
e(x/γ)c −1

] 1
β
}−k−1

.

In Figures 1 and 2 some plots of the PDF and HRF of the LW{LL} model are displayed for some
parameter values. Figure 1 reveals that the LW{LL} density has various shapes such as bimodal,
approximately symmetric, right-skewed, left-skewed and reversed-J. Also, Figure 2 shows that the
LW{LL} HRF can have constant, increasing, decreasing, upside-down bathtub and bathtub shapes.
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Fig. 1. Plots of the LW{LL} densities for selected parameters.
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Fig. 2. Plots of the LW{LL} hazard rates for selected parameters.
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Remark 4.3. From Lemma 1 (i), we have:

(a) If a random variable T follows the Lomax distribution with parameter k, then using Lemma 1 (i)

X = γ
[

log
(

1+T β
)] 1

c
(4.4)

has the LW{LL} distribution with parameters k, β , c and γ .(b) The QF, say Q(u), of the LW{LL}
distribution is given by

Q(u) = γ
{

log
[
1+
(
(1−u)−1/k −1

)β}]}1/c
, 0 < u < 1. (4.5)

(c) By using the result ηR = 1− log(γ)+ ξ (1− γ−1), the Shannon entropy of the LW{LL} distri-
bution is given by

ηX = 1+ log
(

βγ
kc

)
+ξ Γ

(
1− 1

c

)
−
(

1
β
+1
)

γ1−c +(k+1)
∞

∑
j=0

(−1) j

(1− j)

[
ι π
β

+ξ
]
,

where ξ ≈ 0.577216 is the Euler constant.

Lemma 4.1. The rth moment of the LW{LL} distribution is given by

µ ′
r = E(X r) =

kr
c

γr
∞

∑
ℓ=0

ℓ

∑
j=0

(−1)ℓ+ j

(r/c− ℓ)

(
ℓ

j

)(
ℓ− r/c

ℓ

)
p j,ℓ

Γ
(

β (ℓ+ r/c)+1
)

Γ
(

k−β (ℓ+ r/c)
)

Γ(k+1)
,

(4.6)
where β (ℓ+ r/c) is any non-integer real and the constants p j,ℓ can be determined recursively (for
ℓ≥ 1) by (with p j,0 = 1)

p j,ℓ = ℓ−1
ℓ

∑
m=1

[
m( j+1)− ℓ

]
p j,ℓ−m.

Proof. Using (4.4), the rth moment of X is given by

E(X r) = k γr
∫ ∞

0
(1+ x)−k−1

[
log
(

1+ xβ
)]r/c

dx. (4.7)

By using the power series http://functions.wolfram.com/ElementaryFunctions/Log/06/01/04/03/,
we obtain [

log
(

1+ xβ
)]r/c

= r/c
∞

∑
ℓ=0

(
ℓ− r/c

ℓ

) ℓ

∑
j=0

(−1)ℓ+ j
(
ℓ
j

)
(r/c− ℓ)

p j,ℓ xβ
(
ℓ+r/c

)
. (4.8)

Equation (4.6) follows by substituting (4.8) in (4.7) and noting that

∫ ∞

0
xβ
(
ℓ+r/c

)
(1+ x)−k−1 dx =

Γ
(

β (ℓ+ r/c)+1
)

Γ
(

k−β (ℓ+ r/c)
)

Γ(k+1)
,

where β (ℓ+ r/c) is any non-integer real. �
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Further, the central moments (µr) and cumulants (κr) of X are obtained from the ordinary
moments by

µr =
r

∑
k=0

(−1)k
(

r
k

)
µ ′k

1 µ ′
r−k and κr = µ ′

r −
r−1

∑
k=1

(
r−1
k−1

)
κk µ ′

r−k,

respectively, where κ1 = µ ′
1. The skewness and kurtosis of X can be determined from the ordinary

moments using well-known relationships.

Lemma 4.2. Let X be a random variable having the Lomax-R{log-logistic} and R be non-negative.
If E(X r)< ∞ and k > β , then E(X r)≤ E(Rr)

[
1+ k α−β B(k−β ,β +1)

]
.

Proof. If the random variable R is non-negative and X follows the T-R{Y} class in (1.2) with
E(X r) < ∞, one can check that E(X r) ≤ E(Rr)E [1/(1−FY (T ))] (see Theorem 2.1, Aljarrah
et al., 2014). Further, if Y follows the log-logistic distribution with parameters α and β , then
E [1/(1−FY (T ))] = 1 + α−β E(T β ), where T ∼ Lomax(k). The result follows by noting that
E(T β ) = k B(k−β ,β +1) , k > β . �

Theorem 4.1. If X has the LW{LL} distribution, E(X r)< ∞ and if k > β , then

E(X r)≤ γr Γ
(

1+ r/c
) [

1+ k α−β B(k−β ,β +1)
]
.

Proof. The result follows from Lemma 4.2. �

5. Estimation and Simulations

Several approaches for parameter estimation were proposed in the literature but the maximum like-
lihood method is the most commonly employed. The maximum likelihood estimators (MLEs) enjoy
desirable properties and can be used when constructing confidence intervals for the model parame-
ters and also in test statistics. The normal approximation for these estimators in large sample dis-
tribution theory is easily handled either analytically or numerically. So, we consider the estimation
of the unknown parameters for the LW{LL} distribution from complete samples only by maximum
likelihood. Let x1, . . . ,xn be a sample of size n from this distribution given by (4.2). We consider
the estimation of the unknown parameters by the maximum likelihood method. The log-likelihood
function for the vector of parameters θ = (k,β ,c,γ)⊤ can be expressed as

ℓ = n log
(

k c
β γ

)
+

(
c−1

γ

) n

∑
i=1

log(xi) +
n

∑
i=1

(
xi

γ

)c

+

(
1−β

β

) n

∑
i=1

log
[
e
(

xi
γ

)c

−1
]

− (k+1)
n

∑
i=1

log
{

1+
[
e
(

xi
γ

)c

−1
] 1

β
}
. (5.1)

Equation (5.1) can be maximized directly by using the R (optim function), SAS (PROC
NLMIXED) or Ox program (sub-routine MaxBFGS).
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5.1. Simulation study

In this section, we evaluate the performance of the MLEs of the model parameters for the LW{LL}
distribution using Monte Carlo simulation varying the sample size and for selected parameter values.
The simulation study is repeated 5,000 times each with sample sizes n = 25,50,100,200,400,600
and parameter values: I: c = 0.8, k = 0.5, β = 2, γ = 1 and II: c = 1.5, k = 1.1, β = 0.7, γ = 1.
The MLEs are determined by maximizing the log-likelihood function in Equation (5.1) using the
optim routine in the R software. Table 2 provides the average bias (Bias), mean square error (MSE),
coverage probability (CP), average lower bound (LB) and average upper bound (UB) values for the
parameters c, k, β and γ under different sample sizes. From the results of the simulations, we can
verify that the biases and MSEs decrease in general when the sample size n increases. The CP of
the confidence intervals are quite close to the 95% nominal level. Therefore, the MLEs and their
asymptotic results can be used for estimating and constructing confidence intervals even for reason-
ably small sample sizes.

Table 2. Monte Carlo simulation results: Bias, MSE, CP, LB and UB.

Parameter n Bias MSE CP LB UB

I

c 25 0.210 0.526 0.90 0.830 2.364
50 0.085 0.130 0.91 0.651 1.763
100 0.048 0.073 0.92 0.530 1.463
200 0.026 0.035 0.93 0.508 1.262
400 0.009 0.021 0.95 0.531 1.127
600 −0.002 0.014 0.96 0.555 1.056

k 25 0.106 1.316 0.88 1.862 3.068
50 0.037 0.389 0.90 0.988 2.061
100 0.009 0.208 0.91 0.424 1.436
200 −0.012 0.079 0.93 0.159 1.094
400 0.003 0.044 0.95 0.117 0.939
600 0.011 0.028 0.95 0.168 0.862

β 25 0.708 3.786 0.92 3.471 8.815
50 0.554 2.122 0.96 2.652 7.164
100 0.327 1.070 0.96 1.680 5.047
200 0.186 0.474 0.97 1.432 3.871
400 0.091 0.194 0.96 1.390 3.103
600 0.067 0.112 0.95 1.448 2.786

γ 25 0.192 2.521 0.84 4.374 6.679
50 0.240 1.632 0.89 5.539 7.946
100 0.112 0.895 0.93 1.927 4.029
200 0.060 0.541 0.93 1.096 2.957
400 0.052 0.242 0.95 0.596 2.154
600 0.042 0.123 0.96 0.490 1.783
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Table 2 (Continued).

Parameter n Bias MSE CP LB UB

II

c 25 0.405 1.334 0.90 1.196 4.175
50 0.332 0.810 0.92 1.067 3.703
100 0.311 0.549 0.93 0.903 3.339
200 0.250 0.323 0.95 0.877 2.830
400 0.168 0.167 0.96 0.969 2.401
600 0.117 0.110 0.96 1.062 2.178

k 25 −0.083 1.311 0.82 2.938 4.943
50 −0.001 1.052 0.84 2.209 4.341
100 0.184 1.186 0.89 1.440 3.875
200 0.168 0.788 0.91 0.755 3.028
400 0.167 0.522 0.95 0.484 2.611
600 0.122 0.363 0.97 0.385 2.302

β 25 0.133 0.657 0.83 0.755 2.317
50 0.006 0.238 0.86 0.649 1.737
100 −0.039 0.126 0.90 0.458 1.315
200 −0.071 0.035 0.92 0.358 0.967
400 −0.051 0.015 0.94 0.419 0.887
600 −0.035 0.010 0.96 0.474 0.856

γ 25 0.016 2.773 0.84 4.291 6.172
50 0.011 1.700 0.85 2.914 4.746
100 0.121 1.090 0.90 1.654 3.618
200 0.073 0.452 0.91 0.636 2.369
400 0.084 0.260 0.94 0.428 2.030
600 0.061 0.181 0.96 0.400 1.845

6. Applications

In this section, five applications of the LW{LL} model are presented to illustrate its flexibility to
fit data sets having various shapes. In the applications, the model parameters are estimated by the
method of maximum likelihood. The Akaike information criterion (AIC), Bayesian information
criterion (BIC) and Kolmogrove-Smirnov (K-S) statistic are calculated to compare the LW{LL}
model with other models.

6.1. Uncensored data sets

6.1.1. Data set 1: Cancer data.

The first data set represents the remission times (in months) of 128 bladder cancer patients studied
by Lee and Wang (2003). These data were used by Zea et al. (2012) and Lemonte and Cordeiro
(2013) for the beta exponentiated-Pareto and extended Lomax models, respectively. The MLEs,
AICs and BICs for the fitted McDonald-Lomax (McL), beta-Lomax (BL) and Kumaraswamy-
Lomax (KwL) are taken from Lemonte and Cordeiro (2013) while the KS values reported in Table
3 are obtained using R software. The estimates and goodness-of-fit statistics of the exponentiated-
Weibull (EW) (Mudholkar and Srivastava, 1993) and Weibull models are also reported in Table 3.
The figures in Table 3 indicate that the McL, BL, KwL and EW models provide adequate fits, but
the LW{LL} model provides the best fit with lowest AIC and K-S values. The distribution of these

Journal of Statistical Theory and Applications, Vol. 16, No. 4 (December 2017) 490–507
___________________________________________________________________________________________________________

500



data is highly skewed to the right (skewness = 3.29). This application suggests that the LW{LL}
model has the ability to fit right-skewed data sets. For a visual comparison, we provide the PP-plots
of the fitted models in Figure 3. Clearly, the LW{LL} model fits the data more closely.

6.1.2. Data set 2: Carbone Fibre Data.

The second data set has recently been used by Cordeiro and Lemonte (2011) to illustrate the appli-
cability of the beta-Birnbaum-Saunders (BBS) distribution. The MLEs, AICs and BICs for the fitted
BBS and Birnbaum-Saunders (BS) distributions are taken from Cordeiro and Lemonte (2011), and
the KS values in Table 4 are calculated by using the R software. We also provide estimates and
goodness-of-fit statistics of the EW and Weibull models in Table 4. The results in Table 4 indicate
that the LW{LL} model provides the best fit with the lowest AIC, BIC and K-S values. The distri-
bution of these data is slightly skewed to the left (skewness=−0.13). This application reveals that
the LW{LL} distribution has the ability to fit left-skewed data sets. Further, the PP-plots in Figure
4 also support the results in Table 4.

6.1.3. Data set 3: Aarset Data.

The third data set is taken from Aarset (1987) which represents the lifetimes of 50 devices. Recently,
Silva et al. (2010) fitted the beta modified-Weibull (BMW) distribution to these data to illustrate its
potentiality. The MLEs, AICs and BICs values for the fitted BMW, modified-Weibull (MW), beta-
Weibull (BW) (Lee et al., 2007) and EW models are taken from Silva et al. (2010) and the other
results in Table 5 are obtained by using the R software. The figures in Table 5 indicate that LW{LL}
model provides the best fit as compared to those of the BMW, MW, BW, EW and Weibull distribu-
tions. This application suggests that the LW{LL} model can be used to fit bathtub density shaped
data sets. Furthermore, the PP-plots in Figure 5 also support the results in Table 5.

Table 3. MLEs (standard errors in parentheses) and the AIC, BIC and K-S statistics for data set 1.

Distribution Estimates AIC BIC K-S

LW{LL}(k, β , c, γ) 0.8811 0.4528 0.5703 10.7816 826.93 838.336 0.0315
(0.746) (0.294) (0.426) (12.2413)

McL(α , β , a, η , c) 0.8085 11.2929 1.5060 4.1886 2.1046 829.82 844.09 0.0391
(3.364) (15.818) (0.243) (25.029) (3.079)

BL(α , β , a, η) 3.9191 23.9281 1.5853 0.1572 828.14 839.29 0.0406
(18.192) (27.338) (0.280) (5.024)

KwL(α , β , a, η) 0.3911 12.2973 1.5162 11.0323 827.88 839.29 0.0389
(2.386) (17.316) (0.228) (87.144)

EW(a, α , γ) 0.6544 2.7957 3.3461 827.36 835.91 0.0450
(0.1346) (1.2626) (1.8890)

W(α , γ) 1.0478 9.5606 832.17 837.87 0.0700
(0.0675) (0.8529)
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Table 4. MLEs (standard errors in parentheses) and the AIC, BIC and K-S statistics for data set 2.

Distribution Estimates AIC BIC K-S

LW{LL}(k, β , c, γ) 0.2163 1.3772 3.8199 1.9127 178.273 186.99 0.0806
(0.0506) (0.2872) (0.0026) (0.2413)

BBS(α , β , a, b) 1.045 57.600 0.1923 1876 190.71 200.40 0.1380
(0.004) (0.331) (0.026) (605.0)

EW(a, α , γ) 3.9097 0.8009 3.2304 179.88 186.45 0.0849
(1.069) (0.353) (0.345)

BS(α , β ) 0.3911 12.29733 204.38 208.75 0.184
(2.386) (17.316)

W(α , γ) 3.4411 3.0622 186.13 190.51 0.082
(0.3309) (0.1149)

Table 5. MLEs (standard errors in parentheses) and the AIC, BIC and K-S statistics for data set 3.

Distribution Estimates AIC BIC K-S

LW{LL}(k, β , c, γ) 0.9288 8.9661 5.8394 50.3961 440.56 448.21 0.1112
(0.1448) (1.1608) (0.0025) (0.0196)

BMW(a, b, α , λ , γ) 0.1975 0.1647 0.0002 0.0541 1.3771 451.60 461.20 0.1304
(0.0462) (0.0830) (0.0001) (0.0157) (0.3387)

BW(a, b, α , γ) 0.1835 0.0748 0.0007 2.3615 463.90 471.90 0.1657
(0.0509) (0.0353) (0.0004) (0.1715)

MW(α , λ , γ) 0.0624 0.0233 0.3548 460.30 466.00 0.1337
(0.0267) (0.0048) (0.1127)

EW(a, α , γ) 0.0011 0.4668 1.5936 480.50 486.2 0.2237
(0.0010) (0.0889) (0.1858)

W(α , γ) 0.9488 44.8551 486.00 489.82 0.1932
(0.1195) (6.9333)

6.2. Censored data sets

In this section, we provide applications of the LW{LL} model for two censored data sets. The
LW{LL} survival function has closed-form expression and therefore can be used effectively for
lifetime data in presence of censoring. We adopt the AIC and BIC statistics to compare the fits
of the LW{LL} distribution with other models such as the beta-Weibull (BW), beta-Lomax (BL)
(Lemonte and Cordeiro, 2013), Weibull-Lomax (WL) (Tahir et al., 2015), EW and Weibull.

Consider a data set D = (x;r), where x = (x1 . . .xn)
T are the observed failure times and r =

(r1, . . .rn)
T are the censored failure times. The indicator ri is equal to 1 if a failure is observed and

0 otherwise. Suppose that the data are independently and identically distributed and come from a
distribution with PDF given by Equation (4.2). Let θ = (k,β ,c,γ)T denotes a vector of parameters.
The log-likelihood of θ can be written as

L(D;θ) ∝
n

∏
i=1

[ f (xi;θ)]ri [S (xi;θ)]1−ri
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Fig. 3. PP-plots for data set 1.
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Fig. 4. PP-plots for data set 2.

Journal of Statistical Theory and Applications, Vol. 16, No. 4 (December 2017) 490–507
___________________________________________________________________________________________________________

503



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

LW{LL} P−P Plot

Observed

Ex
pe

ct
ed

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

BMW P−P Plot

Observed

Ex
pe

ct
ed

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

BW P−P Plot

Observed

Ex
pe

ct
ed

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

MW P−P Plot

Observed

Ex
pe

ct
ed

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

EW P−P Plot

Observed

Ex
pe

ct
ed

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Weibull P−P Plot

Observed

Ex
pe

ct
ed

Fig. 5. PP-plots for data set 3.

and then the log-likelihood reduces to

ℓ = ri

n

∑
i=1

[
log
(

k c
β γ

)
+(c−1) log
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)
+
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log
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[
log

{
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[

e
(
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γ

)c
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] 1

β
}]

. (6.1)

The log-likelihood can be maximized numerically to obtain the MLEs. There are various rou-
tines available for numerical maximization of ℓ. We use the routine optim in the R software.

6.2.1. Data set 4: Cord failure data.

These data represent strengths in coded units of 48 pieces of weathered braided cord. The data set
has 14.5% of censored observations (7 in total). The detailed description of the data is given in
Crowder et al. (1991). The TTT plot (due to Aarset, 1987) for these data, given in Figure 6(a), has
a concave shape which suggests an increasing hazard shape. Therefore, the LW{LL} distribution is
an appropriate model for fitting these data. The Kaplan-Meier and the survival curves of the fitted
models are displayed in Figure 6(b). The MLEs are listed in Table 6.
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Table 6. MLEs (standard errors in parentheses) and the AIC and BIC statistics for data set 4.

Distribution Estimates AIC BIC

LW{LL}(k, β , c, γ) 0.0791 0.3912 18.6020 46.6390 234.6417 242.6390
(0.0519) (0.1990) (2.3954) (2.0771)

BW(a, b, α , γ) 0.6450 1.2787 27.3528 58.5659 237.8018 245.2866
(0.3094) (5.8190) (14.4741) (11.7415)

BL(a, b, α , γ) 3.1113 190.8120 147.5627 126.1514 258.4820 265.9668
(4.7821) (5.9527) (5.5005) (2.5780)

WL(α , λ , γ) 0.0039 1.6460 1.3141 4.5885 364.7034 372.1882
(0.0005) (0.2689) (0.1992) (2.5780)

EW(a, α , γ) 0.4549 27.1854 57.9520 237.8087 243.4223
(0.2798) (11.9894) (1.3058)

W(α , λ ) 16.3088 56.0281 239.5294 243.2718
(2.0411) (0.5598)
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Fig. 6. (a) TTT plot (b) Kaplan-Meier and estimated survival curves for data set 4.

The results in Table 6 reveal that the LW{LL} distributions provides a better fit than those of
the other models. Also, it is evident from Figure 6(b) that the LW{LL} model captures the pattern
of the Kaplan-Meier curve better than the other models.

6.2.2. Data set 5. HIV data.

These data represent the survival times of HIV+ individuals using a follow up time. Subjects were
enrolled in the study from January 1, 1989 to December 31, 1995. The data set consists of 100
observations with 20% of censored elements. More details about the data can be found in Hosmer
and Lemeshow (1989). The TTT plot for the data is given in Figure 7(a), which suggests an upside
down bathtub shape. Therefore, the LW{LL} distribution could be an appropriate model for the
data. The Kaplan-Meier and survival curves for the fitted models are displayed in Figure 7(b). The
MLEs are listed in Table 7. The smallest values of AIC and BIC statistics for the LW{LL} model
suggest that it provides the best fit. Also, from Figure 7(b), it is evident that LW{LL} model captures
the pattern of the Kaplan-Meier curve better than the other models.
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Table 7. MLEs (standard errors in parentheses) and the AIC and BIC statistics for data set 5.

Distribution Estimates AIC BIC

LW{LL}(k, β , c, γ) 0.0072 39.8580 0.6475 1.6208 549.9042 560.3248
(0.0030) (1.5715) (0.0876) (0.1482)

BW(a, b, α , γ) 19.7146 0.0917 0.5494 0.0859 567.2130 577.6337
(2.1398) (0.0111) (0.0121) (0.0111)

BL(a, b, α , γ) 10.8779 4.5514 5.1465 0.095 569.4952 579.9159
(0.2505) (0.1543) (1.6517) (0.0114)

WL(α , λ , γ) 8.8564 2.1932 0.1002 0.5165 572.7972 583.2179
(1.2966) (0.7224) (0.0579) (0.6813)

EW(a, α , γ) 4.7343 0.4178 1.3779 573.1632 580.9787
(1.5040) (0.0586) (0.7973)

W(α , λ ) 0.8321 13.2791 583.0585 588.2688
(0.0687) (1.8147)
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Fig. 7. (a) TTT Plot (b) Kaplan-Meier and estimated survival curves for data set 5.

7. Concluding remarks

The literature, several ways of extending well-known distributions are been proposed. Conse-
quently, a significant progress has been made toward the generalization of existing distributions.
In this context, we define new family, the Lomax-R{Y} family of distributions. We obtain explicit
expressions for the quantile functions, Shannon entropy and ordinary and incomplete moments. We
consider a special model, namely the Lomax-Weibull{log-logistic} distribution, which is a gen-
eralization of Weibull distribution. Some applications show that the Lomax-Weibull{log-logistic}
distribution can be used effectively in modeling censored and uncensored data sets with various
shapes.
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