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Average biosimilarity is investigated under a three-arm parallel design: one arm corresponds to the test drug
T , and the other two arms correspond to two versions of the reference drug, say R1 and R2. The hypothesis of
interest is the equivalence of the population average response for T with the mean of the population average
responses for R1 and R2. The parameter of interest is formulated as the absolute difference of the above two
averages, scaled by the absolute difference between the population means corresponding to R1 and R2. A differ-
ence parameter is also proposed. For the ratio parameter, a test can be derived using the asymptotic normality of
an appropriate test statistic; however, the test is not satisfactory in terms of type I error probabilities. Improved
tests are derived by applying a bootstrap calibration, and by using the idea of a generalized pivotal quantity
(gpq). The tests are developed under equal variance and unequal variance scenarios. Sample size determination
is also addressed. For the difference parameter, a satisfactory test is developed using the gpq idea. The proposed
methods result in tests that are satisfactory in terms of type I error performance
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1. Introduction

Biosimilar drugs are highly similar products or imitations of already approved biological drugs.
Unlike generic drugs, it is difficult to develop exact copies of biological products due to the com-
plexity of the protein structure. For the approval of generic drug products, the commonly used
method is to assess average bioequivalence (ABE) regarding drug absorption through the conduct
of bioequivalence studies. However, such a criterion alone may not be appropriate for conclud-
ing biosimilarity; nevertheless, the equivalence of averages should be a minimum requirement. We
refer to the U.S. FDA guidance document [6] and the book by Chow [2] for further background
information on biosimilars. In particular, Chow’s book provides a thorough discussion, including a
discussion of the various statistical criteria that can be used for establishing biosimilarity.

Journal of Statistical Theory and Applications, Vol. 16, No. 4 (December 2017) 508–521
___________________________________________________________________________________________________________

508

Received 23 November 2016

Accepted 30 May 2017

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).



The pharmacokinetic (PK) response that is typically used for assessing bioequivalence or
biosimilarity consists of the area under the blood or plasma concentration time curve (AUC). Fur-
thermore, for generating the data for the assessment of biosimilarity, parallel study designs are
found to be more practical. Indeed, the FDA guidance document [6] recommends a parallel design
for establishing biosimilarity. Since we are comparing two drugs, the original biotechnology drug
(or reference drug, denoted by R), and a copy (the test drug, denoted by T ), a two arm parallel
design appears natural. Here the subjects are randomized between the two arms with one arm cor-
responding to the reference drug R, and the second arm corresponding to the test drug T . Since
exact copies of biotechnology drugs are not possible, some authors suggest that R should be com-
pared with itself, and such information should be used to assess the similarity between T and R;
see the article by Kang and Chow [7]. These authors thus suggest a three-arm parallel design for
assessing biosimilarity; one arm of the design corresponds to the test drug T , and other two arms
correspond to the reference drug coming from two batches, or manufactured using two processes;
we shall denote these two versions of the reference drug by R1 and R2. Subjects are randomized
among the three arms. Three-arm trials for equivalence assessment are also discussed in Chang et
al. [1]. However, the third arm considered by the authors is a placebo, unlike the three-arm trial
considered in Kang and Chow [7].

The set up we shall use is the same as that in Kang and Chow [7]. Let µT , µR1 and µR2 denote the
population mean responses corresponding to T , R1 and R2. The responses could be AUC or Cmax,
very often after a log-transformation. In order to assess biosimilarity with respect to averages, the
parameter suggested by Kang and Chow [7] is the ratio

θ = (µT −µR)/(µR1−µR2), where µR = (µR1 +µR2)/2, (1.1)

and the hypotheses of interest are

H0 : |θ | ≥ δ , vs H1 : |θ |< δ , (1.2)

for some specified threshold δ . Biosimilarity is concluded with respect to averages if H0 is rejected
based on a statistical test. Here it is assumed that µR1 6= µR2 , as in Kang and Chow [7]. The justifi-
cation for choosing the parameter θ as defined above is that one cannot expect µT to be close to µR

any more than the amount by which the population averages are close for two copies of R. However,
there are other parameter choices that can capture this requirement; for example, we can consider
the difference

θ1 = |µT −µR|− |µR1−µR2 |, (1.3)

where µR is as defined in (1.1). Now the hypotheses of interest are

H0 : |θ1| ≥ δ1, vs H1 : |θ1|< δ1, (1.4)

for some specified threshold δ1. Biosimilarity is concluded with respect to averages if H0 in (1.4) is
rejected.

The purpose of our investigation is to develop appropriate tests for the hypothesis in (1.2) and
(1.4). We shall assume normally distributed responses, as in Kang and Chow [7]. These authors have
derived a test for the hypotheses in (1.2) using the asymptotic normality of the natural estimator of
θ = (µT −µR)/(µR1−µR2), assuming a common variance for the responses from the test drug and
the reference drug. Even under such a scenario, Kang and Chow’s approximate test is not always
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satisfactory. We improve and generalize Kang and Chow’s approach in the following ways. In the
equal variance scenario, we apply a bootstrap calibration to the test due to Kang and Chow [7].
This results in a test that exhibits better performance in terms of type I error probability, but is still
not entirely satisfactory. We also developed a test using the concept of a generalized pivotal quantity
(gpq). The gpq-based test turned out to be the most satisfactory in terms of maintaining the type I
error probability. We have also provided results on the power. We also consider the unequal variance
situation, and pursue the same approaches to arrive at test procedures. We have also provided a table
of sample sizes. The relevant results appear in Section 2 of the paper. Following this, we consider the
hypotheses in (1.4) concerning the parameter θ1 = (µT −µR)−(µR1−µR2), and have investigated a
gpq-based test. Simulation results show that such a test is satisfactory in terms of type I error prob-
abilities. Details appear in Section 3 of the paper. Overall, our work has resulted in very satisfactory
test procedures for assessing biosimilarity with respect to averages based on the hypotheses in (1.2)
and (1.4). An example is presented in Section 4 of the paper. The example deals with testing the
biosimilarity of Accofil, a biologic that is expected to be similar to the reference product Neupogen;
the latter being used to boost white blood cell production in patients undergoing chemotherapy for
certain cancers. Here we have a three arm design since Accofil will be compared to two versions
of Neupogen: a version approved by the European Union and another version approved by the US.
The relevant data are taken from a European Medicines Agency document [5]. Our methodology
will be illustrated using this data set.

2. Testing Average Biosimilarity Based on θ = (µT −µR)/(µR1−µR2)

Recall that our problem is that of testing the hypotheses in (1.2) based on data generated using a
three-arm parallel design. Under such a design, let nT subjects receive the test drug T , nR subjects
receive the reference drug R1, and another group of nR subjects receive the reference drug R2, where
R1 and R2 represent two versions of the reference drug R manufactured using two processes, or in
two batches. In Kang and Chow [7], the authors assume a 2:1 ratio between nT and nR. We shall also
assume this, even though this is not essential for the development of our methodology. It is assumed
that the responses follow a normal distribution where the population means corresponding to the
three arms are denoted by µT , µR1 and µR2 , respectively, as specified in the previous section. In their
work, Kang and Chow [7] assume a common population variance σ2 for the responses from T , as
well as for the responses from R1 and R2. In our investigation, we shall first consider the case of a
common variance, and later relax this assumption. In other words, we shall also consider the case
of a population variance σ2

T for the responses for T , and a population variance σ2
R for the responses

from R1, as well as for those from R2, where σ2
T and σ2

R need not be equal. We shall also denote
by X̄T , X̄R1 and X̄R2 , respectively, the sample means based on the responses from the sample of size
nT for T , the responses from the sample of size nR for R1, and those from the sample of size nR

for R2. Furthermore, in the case of a common population variance σ2, we shall denote by S2 the
unbiased estimator of σ2 obtained by pooling the data from the three samples. We thus have the
distributions

X̄T ∼ N
(

µT ,
σ2

nT

)
, X̄R1 ∼ N

(
µR1 ,

σ2

nR

)
, X̄R2 ∼ N

(
µR2 ,

σ2

nR

)
,

(nT +2nR−3)
S2

σ2 ∼ χ
2
nT+2nR−3, (2.1)
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where χ2
m denotes a central chisquare distribution with m df. Furthermore, the above random vari-

ables are independent. In the case of unequal population variances, let S2
T denote the sample variance

from the sample of nT responses for T , and let S2
R denote the sample variance obtained by pooling

the nR responses for R1 and the nR responses for R2. We then have the distributions

X̄T ∼ N
(

µT ,
σ2

T

nT

)
, X̄R1 ∼ N

(
µR1 ,

σ2
R

nR

)
, X̄R2 ∼ N

(
µR2 ,

σ2
R

nR

)
,

(nT −1)
S2

T

σ2
T
∼ χ

2
nT−1, (2nR−2)

S2
R

σ2
R
∼ χ

2
2nR−2, (2.2)

where the above random variables are also independent. In the common variance scenario, two test
procedures are developed in Kang and Chow [7]: one based on the delta method, and a second test
based on a linearization method. Based on numerical results, they then recommend the test based
on the delta method, and also provide tables of sample sizes based on power considerations. In the
common variance scenario, we shall first improve upon the delta method based test by applying a
bootstrap calibration. Secondly, we shall extend the methodology to the unequal variance situation
as well. In both cases, we shall also derive a test based on the idea of a generalized pivotal quantity.
We shall also provide table of sample sizes so that our proposed tests will achieve a specified power.

2.1. The generalized pivotal quantity (gpq)

Before we describe the various test procedures, we shall briefly describe the generalized pivotal
quantities that we shall use. The concept is due to Weerahandi [12]; see also [13] and [14]. A
generalized pivotal quantity (gpq) is a function of the underlying random variables, and the observed
data that are realizations of these random variables. We shall construct gpqs for µT , µR1 and µR2 ,
and then combine them to get a gpq for a parameter of interest (for example, the parameter θ in
(1.1) and θ1 in (1.3)). A gpq is required to satisfy two properties: (i) given the observed data, its
distribution is free of any unknown parameters, and (ii) when the random variables are replaced by
the corresponding realizations (i.e., the observed data), the gpq simplifies to a quantity that is free
of any nuisance parameters; very often, the simplified quantity is equal to the parameter of interest.

In the equal variance scenario (2.1), let x̄T , x̄R1 , x̄R2 and s2 denote the observed values of X̄T , X̄R1 ,
X̄R2 and S2, respectively. Then gpqs for µT , µR1 and µR2 , denoted by µ̃T , µ̃R1 and µ̃R2 , respectively,
are given by

µ̃T = x̄T −
ZT

U/
√

nT +2nR−3
s
√

nT
,

µ̃R1 = x̄R1 +
ZR1

U/
√

nT +2nR−3
s
√

nR
, (2.3)

µ̃R2 = x̄R2 +
ZR2

U/
√

nT +2nR−3
s
√

nR
,

where ZT , ZR1 and ZR2 are independent standard normal random variables and U2 ∼ χ2 with df =
nT + 2nR− 3. We refer to the book by Krishnamoorthy and Mathew [9], Section 1.4, for further
details on the derivation of the above gpqs. Having obtained the gpqs in (2.3), a gpq for θ , say θ̃ ,
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can be obtained as

θ̃ =
|µ̃T − µ̃R|
|µ̃R1− µ̃R2 |

, (2.4)

where µ̃R = (µ̃R1 + µ̃R2)/2. Percentiles of θ̃ provide confidence limits for θ , referred to as general-
ized confidence limits.

In the unequal variance scenario (2.2), gpqs for µT , µR1 and µR2 , denoted once again by µ̃T , µ̃R1

and µ̃R2 , respectively, are given by

µ̃T = x̄T −
ZT

UT/
√

nT −1
sT√
nT

,

µ̃R1 = x̄R1 +
ZR1

UR/
√

2nR−2
sR√
nR

, (2.5)

µ̃R2 = x̄R2 +
ZR2

UR/
√

2nR−2
sR√
nR

,

where s2
T and s2

R are the observed values of S2
T and S2

R, respectively, U2
T ∼ χ2 with df = nT − 1,

U2
R ∼ χ2 with df = 2nR−2, and the rest of the quantities are as defined for the gpqs in (2.3).

2.2. The case of a common variance

We first give a brief description of the delta method approach given in Kang and Chow [7]. In view
of the definition of θ in (1.1) and the distributions in (2.1), a natural estimator of θ , say θ̂ , is given
by

θ̂ =
X̄T − (X̄R1 + X̄R2)/2

X̄R1− X̄R2

. (2.6)

Defining

µ1 = µT − (µR1 +µR2)/2, µ2 = µR1−µR2 , σ
2
1 =

2σ2

nT
, and σ

2
2 =

2σ2

nR
, (2.7)

θ̂ can also be expressed as

θ̂ =
V̄
Ū
, where V̄ ∼ N(µ1,σ

2
1 ) and Ū ∼ N(µ2,σ

2
2 ), (2.8)

where we have used the assumption nT = 2nR. We also note that V̄ and Ū are also independent. A
straightforward application of the delta method gives

√
nT

(
V̄
Ū
− µ1

µ2

)
∼ N

(
0,

2σ2

µ2
2

+
4µ2

1 σ2

µ4
2

)
, (2.9)

asymptotically. Following the methodology used in bioequivalence testing, we reject H0 in (1.2)
when

Z =
| V̄Ū |−δ

S√
nT

√
2

Ū2 +
4V̄ 2

Ū4

<−zα (2.10)

where S2 is the pooled variance mentioned in (2.1) and zα is the upper α quantile of the standard
normal distribution. Numerical results show that the performance of the above test is not satisfactory
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in terms of maintaining the type I error probability; the type I error probabilities are often higher than
the nominal level. We shall thus employ a bootstrap calibration in order to improve the performance.

2.2.1. Bootstrap Calibration

The bootstrap calibration idea that we shall apply is taken from Chapter 18 in the book by Efron and
Tibshirani [4]. We shall explain the calibration idea as it applies to our problem. Since we noted that
the test procedure in (2.10) has type I error probability more than the nominal level, it is possible
that the type I error probability can be made closer to α by carrying out the test using a significance
level γ < α . The required significance level γ will be determined using the bootstrap. Under the
normality assumption in (2.9), it is known that maxH0P(Z < −zα) = P(Z < −zα |θ = δ ), where
H0 is specified in (1.2). The above conclusion follows from the theoretical developments in the
context of bioequivalence testing; see the book by Chow and Liu [3]. However, P(Z <−zα |θ = δ )

does depend on nuisance parameters. Since the type I error probability is being computed when
θ = µ1/µ2 = δ , the nuisance parameters in the model can be taken as λ = (µ1,σ

2), so that µ2 is
determined as µ2 = µ1/δ . Thus, when θ = µ1/µ2 = δ , the distributions in (2.8) can be written as

V̄ ∼ N
(

µ1,
2σ2

nT

)
and Ū ∼ N

(
µ1/δ ,

2σ2

nR

)
, (2.11)

where we have used the expressions for σ2
1 and σ2

2 given in (2.7). We note that based on (2.11), the
estimator of µ1, say µ̂10, is given by

µ̂10 =
(

nT +
nR

δ 2

)−1(
nTV̄ +

nR

δ
Ū
)
. (2.12)

We shall implement the bootstrap calibration by generating parametric bootstrap samples
(V̄ ∗,Ū∗,S∗

2
) from the distributions

V̄ ∗ ∼ N
(

µ̂10,
2S2

nT

)
, Ū∗ ∼ N

(
µ̂10/δ ,

2S2

nR

)
, and (nT +2nR−3)

S∗
2

S2 ∼ χ
2
nT+2nR−3, (2.13)

where S2 is as specified in (2.1), and µ̂10 is given in (2.12). Now let (V̄ ∗i ,Ū
∗
i ,S
∗2

i ), i = 1, 2, ...., B,
be a parametric bootstrap sample of size B generated from the distribution of (V̄ ∗,Ū∗,S∗

2
) given in

(2.13). Let

Z∗i =
| V̄
∗
i

Ū∗i
|−δ

S∗i√
nT

√
2

Ū∗2i
+

4V̄ ∗2i

Ū∗4i

, (2.14)

i = 1, 2, ...., B. Our objective is to choose a γ that will make the type I error probability very close
to α . For this, we can consider a grid of values of γ , and compute the proportion of times Z∗i <−zγ .
Now pick a value of γ for which this proportion is equal to α . We used the R function uniroot to
obtain γ . Let the resulting choice of γ be denoted by α̂ in order to emphasize that the significance
level to be used is actually estimated from the data. The bootstrap calibrated test consists of rejecting
H0 in (1.2) when Z <−zα̂ , where Z is defined in (2.10).
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2.2.2. The gpq-based test

As noted in Section 2.1, a gpq for θ is the quantity θ̃ given in (2.4). In order to test (1.2) at signif-
icance level α , we compute the 100(1−α)th percentile of θ̃ , and reject H0 if such a percentile is
less than δ . Note that in order to compute such a percentile, we keep the observed data (x̄T , x̄R1 , x̄R2

and s2) as fixed, and treat the gpq as a random variable that is a function of the independent standard
normal random variables ZT , ZR1 and ZR2 , and the chisquare random variable U2 ∼ χ2 with df =
nT +2nR−3. Several copies of the gpq can be generated by generating several values of (ZT , ZR1 ,
ZR2 , U2). The100(1−α)th percentile of the gpq can be computed based on such generated values,
which can then be used to carry out the test.

2.2.3. Numerical Results

In order to assess the performance of the delta method based test proposed by Kang and Chow [7]
along with the improvement resulting from bootstrap calibration, and to compared with the gpq
based test, we shall now report some simulation results. The sample sizes and parameter combina-
tions used in the simulations are taken from Kang and Chow [7]. We used the sample sizes nT = 30,
50, and 100, and nR = nT/2. Two values of δ were considered: δ = 1.1 and 1.2, and three values
of σ were considered: σ = 1, 2, and 3. Table 1 gives the type I error probabilities of the test with
rejection region (2.10), its bootstrap calibrated version, and the gpq based test. In the table, these
are denoted by “Delta method”, “Bootstrap calibration” and ”GPQ Method”, respectively. We have
used a 5% nominal level, and the results in Table 1 are based on 10,000 simulations.

From the numerical results, it should be clear that the delta method based test exhibits poor
performance when the sample size is small and/or when the common variance σ2 is large. The
bootstrap calibration improves the type I error performance of the test in terms of providing type I
error probabilities close to the nominal level. However, the test is still not satisfactory. On the other
hand, the gpq based test appears to provide satisfactory type I error probabilities in all scenarios
considered for simulation. Clearly, the test to be recommended is the gpq based test.

Table 1. Type 1 error probabilities of the different tests in the equal variance case for a 5% signifi-
cance level.

δ µT µR1 µR2 σ2 nT
Delta
Method

Bootstrap
Calibration

GPQ
Method

µT µR1 µR2 σ2 nT
Delta
Method

Bootstrap
Calibration

GPQ
Method

30 0.0631 0.0447 0.0441 30 0.0686 0.0535 0.0478
1.2 117 100 110 1 50 0.0564 0.0434 0.0524 110.2 106 100 1 50 0.0621 0.0499 0.0466

100 0.0578 0.0477 0.0523 100 0.0581 0.0485 0.0543
30 0.0647 0.0397 0.0476 30 0.0726 0.0519 0.0456

1.2 117 100 110 2 50 0.0557 0.0366 0.0499 110.2 106 100 2 50 0.0701 0.0523 0.0501
100 0.0562 0.0441 0.0491 100 0.0583 0.0477 0.0511
30 0.0694 0.0396 0.0453 30 0.0754 0.0492 0.0488

1.2 117 100 110 3 50 0.0606 0.0363 0.0451 110.2 106 100 3 50 0.0696 0.0509 0.0451
100 0.0563 0.0404 0.0515 100 0.0630 0.0502 0.0479
30 0.0590 0.0370 0.0461 30 0.0656 0.0490 0.0460

1.1 116 100 110 1 50 0.0592 0.0435 0.0498 109.6 106 100 1 50 0.0640 0.0527 0.0468
100 0.0553 0.0455 0.0512 100 0.0605 0.0517 0.0470
30 0.0637 0.0379 0.0457 30 0.0695 0.0478 0.0472

1.1 116 100 110 2 50 0.0614 0.0407 0.0492 109.6 106 100 2 50 0.0671 0.0531 0.0510
100 0.0606 0.0435 0.0481 100 0.0615 0.0510 0.0457
30 0.0646 0.0498 0.0468 30 0.0767 0.0510 0.0459

1.1 116 100 110 3 50 0.0659 0.0528 0.0476 109.6 106 100 3 50 0.0688 0.0497 0.0515
100 0.0610 0.0530 0.0470 100 0.0644 0.0503 0.0497
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nT=20
σ2= 1

nT=20
σ2= 5

nT=20
σ2= 10

nT=20
σ2= 20

Fig. 1. Distribution of the test statistic under different variances and nR =20

Table 2. Upper and Lower tail probabilities of the test statistic Z in (2.10) (based on 100,000

simulations)

σ2 Probability

α = 0.05 α = 0.1

nR nR

20 50 100 20 50 100

1
P(Z <−zα ) 0.0592 0.0560 0.0545 0.1108 0.1085 0.1029

P(Z > zα ) 0.0382 0.0426 0.0453 0.0876 0.0911 0.0938

5
P(Z <−zα ) 0.0721 0.0641 0.0596 0.1243 0.1143 0.1103

P(Z > zα ) 0.0227 0.0333 0.0379 0.0695 0.0813 0.0887

10
P(Z <−zα ) 0.0785 0.0685 0.0641 0.1292 0.1190 0.1140

P(Z > zα ) 0.0095 0.0256 0.0331 0.0524 0.0743 0.0842

In order to have further insight into the poor performance of the delta method based test, we
plotted a histogram of the test statistic based on 10,000 simulated values for nR = 20, and σ2 = 1, 5,
10 and 20. These appear in Figure 1, with the normal curve superimposed. It is clear that the normal
approximation is poor as σ becomes large. In Table 2, we have given the tail probabilities of the
distribution of the test statistic, below and above −zα and zα , where zα is the upper α percentile
of the standard normal distribution. The asymmetry of the distribution and the poor quality of the
normal approximation should be clear from Table 2 when the sample size is small and/or σ2 is
large.

2.2.4. Power comparison

Figure 2 gives plots of the power curves of the three tests, plotted against the sample size, for σ2

= 1. For this, the null value is chosen as θ = δ = 1.2 and the alternative used is θ = 0. For each
combination of the sample size and σ , the power was obtained using 5000×5000 simulations. We
note that for small sample sizes, the delta method based test has a slightly larger power, and the gpq
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Fig. 2. Power functions plotted against the sample size for the alternative θ = 0 when σ2
T = σ2

R = σ2 = 1.

based test has somewhat lower power. This is to be expected since the type I error probabilities are
slightly inflated for the delta method based test (as noted in Table 1). However, as the sample size
gets large, the difference in power among the three tests disappears. More extensive plots are given
in Pottackal [10], and the pattern noted in the different plots is the same as that in Figure 2.

2.3. The case of unequal variances

We now have the distributions specified in (2.2). A natural estimator of θ is once again given by θ̂

in (2.6). Defining

µ1 = µT − (µR1 +µR2)/2, µ2 = µR1−µR2 , σ
2
1 =

σ2
T +σ2

R

nT
and σ

2
2 =

2σ2
R

nR
, (2.15)

θ̂ can also be expressed as

θ̂ =
V̄
Ū
, where V̄ ∼ N(µ1,σ

2
1 ) and Ū ∼ N(µ2,σ

2
2 ), (2.16)

where we have used the assumption nT = 2nR. Note that V̄ and Ū are also independent. Once again,
a straightforward application of the delta method gives

√
nT

(
V̄
Ū
− µ1

µ2

)
∼ N

(
0,

σ2
1

µ2
2
+

µ2
1 σ2

2

µ4
2

)
, (2.17)

asymptotically. We reject H0 when

| V̄Ū |−δ√
S2

1
Ū2 +

V̄ 2S2
2

Ū4

<−zα (2.18)

where S2
1 and S2

2 are the variances given in (2.2). A bootstrap calibrated version can also be derived
as done earlier for the case of equal variances. For this, we note that with σ2

1 and σ2
2 as defined in

(2.15), respective estimates σ̂2
1 and σ̂2

2 are given by σ̂2
1 = (S2

T + S2
R)/nT and σ̂2

2 = 2S2
R/nR, where

Journal of Statistical Theory and Applications, Vol. 16, No. 4 (December 2017) 508–521
___________________________________________________________________________________________________________

516



S2
T and S2

R have the distributions specified in (2.2). In view of (2.16), a derivation similar to (2.12)
gives us

µ̂10 =

(
1

σ̂2
1
+

1
δ 2σ̂2

2

)−1( V̄
σ̂2

1
+

Ū
δ σ̂2

2

)
.

In order to perform the bootstrap calibration, parametric bootstrap samples are generated from the
distributions

V̄ ∗ ∼ N
(
µ̂10, σ̂

2
1
)
, Ū∗ ∼ N

(
µ̂10/δ , σ̂2

2
)
,(nT −1)

S∗2T

S2
T
∼ χ

2
nT−1, (2nR−2)

S∗2R

S2
R
∼ χ

2
2nR−2.

Furthermore, a gpq based test can also be derived. We recall that the derivation of the gpqs in the
unequal variance scenario is explained in Section 2.1.

2.3.1. Type I error and power

Similar to Table 1 and Figure 2, Table 3 and Figure 3, respectively, give the type I error probabilities
and power plots for the different tests in the unequal variance scenario for the sample sizes nT =
30, 50, and 100, nR = nT/2, and null value δ = 1.2. Furthermore, the σ2

T and σ2
R were chosen to

take the values 1, 2 and 3. The power plots have been obtained at the alternative value θ = 0, and is
given only for the parameter choice σ2

T = 1 and σ2
R = 2 (see Pottackal [10] for further plots on the

Table 3. Type 1 error probabilities of the different tests in the unequal variance case for a 5%
significance level.

δ µT µR1 µR2 σ2
T σ2

R nT
Delta

Method
Bootstrap

Calibration
GPQ

Method
30 0.0629 0.0380 0.0479

1.2 117 100 110 1 1 50 0.0595 0.0409 0.0484
100 0.0550 0.0429 0.0516
30 0.0687 0.0405 0.0509

1.2 117 100 110 1 2 50 0.0634 0.0418 0.0468
100 0.0579 0.0430 0.0498
30 0.0694 0.0393 0.0476

1.2 117 100 110 1 3 50 0.0641 0.0412 0.0510
100 0.0620 0.0442 0.0532
30 0.0618 0.0289 0.0463

1.2 117 100 110 2 1 50 0.0579 0.0320 0.0491
100 0.0584 0.0381 0.0497
30 0.0637 0.0332 0.0500

1.2 117 100 110 2 2 50 0.0603 0.0353 0.0526
100 0.0563 0.0391 0.0511
30 0.0682 0.0514 0.0491

1.2 117 100 110 2 3 50 0.0622 0.0523 0.0508
100 0.0604 0.0506 0.0474
30 0.0619 0.0301 0.0526

1.2 117 100 110 3 1 50 0.0561 0.0266 0.0501
100 0.0546 0.0266 0.0475
30 0.0657 0.0285 0.0487

1.2 117 100 110 3 2 50 0.0610 0.0317 0.0500
100 0.0572 0.0363 0.0479
30 0.0667 0.0302 0.0499

1.2 117 100 110 3 3 50 0.0635 0.0352 0.0512
100 0.0586 0.0391 0.0519
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Fig. 3. Power functions plotted against the sample size for the alternative θ = 0 when σ2
T and σ2

R are unequal, with σ2
T

=1 and σ2
R = 2.

power). The conclusions from Table 3 and Figure 3 are similar to those for the equal variance case.
In particular, the gpq based test emerges as the one that is most satisfactory.

2.3.2. Sample size calculation

In their paper, Kang and Chow [7] have provided table of sample sizes so that the delta method
based test will provide 80% and 90% power. Table 4 gives the sample sizes nT that will guarantee
90% power by the different tests in the unequal variance scenario.

Note that once nT is determined, nR is obtained as 2nT . From Table 4, we see that overall, the
required sample size is slightly higher for the gpq based test. This is to be expected in view of the
type I error performance of the tests.

Here we would like to point out that sample size determination in the context of equivalence
trials is discussed in several articles; see [1] and [11]. Also, Kang and Kim [8] have addressed the
sample size issue for biosimilar products; however, the set up considered by the authors is the usual
bioequivalence scenario involving a single test drug and a single reference drug.

Table 4. Sample sizes nT necessary to guarantee 90% power for the delta method based test, its
bootstrap calibrated version and the gpq based test at the alternative value θ = 0, for a 5%

significance level.

σ2
T σ2

R
Delta

Method
Bootstrap

Calibration
GPQ

Method
1 1 5 8 8
2 2 9 12 13
3 3 12 18 21
1 2 19 27 29
1 3 23 37 39
1 4 29 49 51
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3. Testing Average Biosimilarity Based on |µT −µR|− |µR1−µR2 |

We note that the hypothesis in (1.2), formulated in terms of the parameter θ defined in (1.1), is what
is given in Kang and Chow [7]. We have simply followed their formulation, and have improved
their test using bootstrap calibration, suggested a test based on the gpq, and have also extended their
results to the unequal variance scenario. It should however be noted that if the means µR1 and µR2

are very close, θ defined in (1.1) will have its denominator close to zero. This could present practical
difficulties; for example, how can one choose the threshold δ in the hypotheses in (1.2), when µR1

and µR2 are unknown and their difference could be close to zero? It appears that an alternative
formulation could mitigate this problem. Thus, instead of the ratio used to define θ in (1.1), we
shall consider the parameter to be the difference defined in (1.3) and consider the hypotheses

H0 : θ1 ≥ δ1, vs H1 : θ1 < δ1, (3.1)

for some specified threshold δ1. Note that θ1 also measures the magnitude of |µT − µR| relative
to that of |µR1 − µR2 |. We shall develop a test for the hypotheses in (3.1) using the gpq approach.
Let µ̃T , µ̃R1 and µ̃R2 , respectively denote gpqs for µT , µR1 and µR2 , as defined in Section 2.1. We
recall that the definition of these quantities depend on whether the variances σ2

T and σ2
R are equal or

unequal. Also define µ̃R = (µ̃R1 + µ̃R2)/2. A gpq for θ1 defined in (1.3) is the quantity θ̃1 given by

θ̃1 = |µ̃T − µ̃R|− |µ̃R1− µ̃R2 |, (3.2)

and the hypotheses in (3.1) can be tested using the 100(1−α)th percentile of the resulting gpq. An
estimate of this percentile can be easily obtained using Monte Carlo simulation, and we reject H0

if the 100(1−α)th percentile so obtained is less than δ1. Table 5 and Table 6 give the type I error
probabilities of the resulting test in the equal variance and unequal variance scenarios. It should be
clear that the gpq based test is quite accurate.

Table 5. Type 1 error probabilities of the gpq based test for testing the hypotheses in (3.1) at a 5%
significance level (σ2

T = σ2
R).

µT µR1 µR2 σ2
T

n
30 50 100

1 0.0522 0.0488 0.0516
117 100 110 2 0.0465 0.0502 0.0500

3 0.0499 0.0486 0.0463
1 0.0477 0.0479 0.0499

116 100 110 2 0.0454 0.0512 0.0525
3 0.0500 0.0479 0.0493
1 0.0463 0.0435 0.0519

110.2 106 100 2 0.0465 0.0464 0.0522
3 0.0499 0.0477 0.0526
1 0.0510 0.0475 0.0548

109.6 106 100 2 0.0469 0.0491 0.0490
3 0.0491 0.0482 0.0507
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Table 6. Type 1 error probabilities of the gpq based test for testing the hypotheses in (3.1) at a 5%
significance level (σ2

T and σ2
R are unequal and σ2

T = 1).

µT µR1 µR2 σ2
R

n
30 50 100

1 0.0459 0.0510 0.0475
117 100 110 2 0.0534 0.0497 0.0492

3 0.0524 0.0502 0.0461
1 0.0432 0.0516 0.0520

116 100 110 2 0.0486 0.0496 0.0501
3 0.0479 0.0483 0.0483
1 0.0485 0.0503 0.0471

110.2 106 100 2 0.0484 0.0510 0.0504
3 0.0495 0.0506 0.0502
1 0.0473 0.0529 0.0509

109.6 106 100 2 0.0478 0.0491 0.0503
3 0.0486 0.0527 0.0468

4. An Example

The example is taken from the European Medicines Agency document [5]. The problem addressed
in the document is that of testing biosimilarity of Accofil, a biologic that is expected to be similar
to the reference product Neupogen. The biotechnology drug Neupogen has been approved for use
to boost white blood cell production in patients undergoing chemotherapy for certain cancers. Two
versions, say R1 and R2, of Neupogen are used in the biosimilarity study: EU-approved Neupogen
and US-licensed Neupogen, corresponding to two arms of the study, and the third arm corresponds
to the biosimilar version Accofil (the test drug T ). The data are actually generated using a three-
period crossover design. For the purpose of illustrating our methodology, we shall ignore this aspect,
and proceed with the assumption of a three-arm parallel design. The sample sizes are nT = 43 for
Accofil, and nR = 43 for each reference arm. The observed values of the summary statistics (based
on the AUC data) are

x̄T = 200720.00, x̄R1 = 192379.97, x̄R2 = 186404.48,sT = 68,244.80, and sR = 60611.94.

The details given in the European Medicines Agency document [5] indicate that log-normality is
reasonable. Since the summary statistics based on the log-transformed data are not available, we
proceed assuming normality. The gpq based upper confidence limit for θ came out to be 15.92.
Thus if we choose a value δ = 1.20, the null hypothesis in (1.2) cannot be rejected. In other words,
we cannot conclude biosimilarity.

5. Discussion

There is increasing interest in the development of biosimilars, and statistical criteria for establishing
biosimilarity are still emerging. In the investigation of such criteria, two challenges present them-
selves: (i) the appropriate criterion/criteria that should be used to establish biosimilarity, and (ii) the
development of accurate tests based on the chosen criteria. In this article, we have not advocated any
specific statistical criterion; indeed, there is no consensus yet on the statistical criterion that should
be used. However, we feel that average biosimilarity is a minimum requirement for a biosimilar
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product. Average biosimilarity has already been investigated in the literature, and can be addressed
in the context of two-arm and three-arm parallel designs. The latter set up has recently been taken
up by Kang and Chow [7], and our work is also in the same scenario. The contribution in our work
is three-fold: we have relaxed the equal variance assumption in their article, we have derived an
accurate test using generalized pivotal quantities, and we have suggested an alternative formulation
for assessing average biosimilarity. Our test procedures exhibit satisfactory performance in terms
of type I error probabilities. Our overall conclusion is that average biosimilarity can be assessed
accurately, even when the test and reference formulations exhibit different variabilities.
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