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Discrete distributions are widely used to model lifetime for count data. In this paper we introduce a new gener-
alization of weighted geometric (GWG) distribution with the weight function w(x) = (1− pαx)β whose special
case proposes a discrete generalized weighted exponential distribution. Further, it is observed that GWG dis-
tribution can be produced through a selection model. GWG distribution can be viewed as the generalization
of a weighted geometric distribution, the discrete generalized exponential distribution and the classic geomet-
ric distribution. We shall study several distributional and structural properties of our distribution such as its
shape properties, unimodality, infinite divisibility, moments probability weighted moments, stochastic order-
ings, order statistics, entropies and stress-strength reliability function. We shall also present some related novel
characterizations. Finally, estimation of the parameters are investigated and applicability of the model is exam-
ined using a real data set .
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1. Introduction

In the last decades, several traditional discrete distributions such as geometric, negative binomial,
Poisson, etc. have been used to fit all types of discrete data. However, such classical disctere distri-
butions are not much flexible to fit many types of discrete data. Thus, recently several methods have
been propesed to construct new discrete distributions with higher flexibility to model such data.
Further, in real situations, sometimes we can not measure the life length of a device on a continuous
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scale. Thus, there is a real need to find more discrete distributions to cover various types of count
data.
One of the most common methods for constructing new discrete distributions is to discretize known
continuous distributions. Infact, there are two general techniques for generating new discrete distri-
butions using a given baseline continuous distribution. By these techniques, we define a probability
mass functions (pmf) by

P(Y = y) =
f (y)

∑∞
j=1 f ( j)

, y = 1,2, ..., (1.1)

or

P(Y = y) = F̄(y)− F̄(y+1), y = 0,1, ..., (1.2)

using any probability density function (pdf) f or survival function F̄ of a baseline absolutely con-
tinous distribution. For instance, the discrete normal distribution was introduced by Lisman and
van Zuylen (1972). Similarly, Laplace, skew-Laplace, discrete additive Weibull, exponentiated dis-
crete Weibull, discrete beta-exponential and alpha-skew-Laplace distributions on the lattice of inte-
gers were proposed by Inusah and Kozubowski (2006), Kozubowski and Inusah (2006), Bebbing-
ton (2012), Nekoukhou and Bidram (2015), Nekoukhou et al. (2015) and Harandi and Alamatsaz
(2015), respectively.
Another method to construct a new discrete distribution is to define weighted version of a baseline
distribution, as proposed by Patil and Rao (1977, 1978). For example Bhati and Joshi (2015) pro-
posed the weighted geometric distribution using this method.
In this paper, we propose a new generalization of the weighted geometric (GWG) distribution by
implementing Patil and Rao,s (1977, 1978) method on geometric distribution with the weight func-
tion w(x) = (1− pαx)β . It is interesting to see that our GWG distribution proposes a discrete version
of the generalized weighted exponential of Kharazmi et al. (2015) as its special case.
Formerly, many attempts have been made to construct some generalizations of the geometric distri-
bution in the literature such as those of Philippou et al. (1983), Tripathi et al. (1987), Gómez-Déniz
(2010), Nekoukhou et al. (2011), Akinsete et al. (2014) , Bhati and Joshi (2015), Bidram et al.
(2015), Nekoikhou and Bidram (2016) and Akdoǧan et al. (2016).
Let us recall that a random variable Y has a weighted exponential (WE) distribution, denoted by
WE(α,λ ), if the pdf of Y is

fY (y;α,λ ) =
α +1

α
λe−λy(1− e−αλy), y > 0, (1.3)

where α > 0 and λ > 0 are the corresponding shape and scale parameters, respectively. Since WE
distribution is of interest in several applications, especially in lifetime modeling and reliability, sev-
eral authors have attempted to generalize this distribution to cover more applications. For instance,
Shakhatreh (2012) generalized exponential distribution with a two-parameter weighted function
and a regular exponential distribution; TWE(α1,α2,λ ). A special case of this model is the two
parameter generalized exponential distribution when α1 = α2 = α with pdf

fY (y;α,α,λ ) =
(α +1)(1+2α)

2α2 λe−λy(1− e−αλy)2, y > 0,α > 0,λ > 0 (1.4)
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More recently, Kharazmi et al. (2015) introduced a new class of generalized weighted exponential
(GWE(α,λ ,n)) distributions with pdf

fY (y;α,λ ,n) =
α

B( 1
α ,n+1)

λe−λy(1− e−λαy)n, y > 0,α > 0,λ > 0, (1.5)

where B(a,b) =
∫ 1

0 ta−1(1− t)b−1dt and n ∈ N = {1,2, ...}. GWE distribution contains both WE
and TWE distributions, as its sub models.
The remainder of the paper is organized as follows. In Section 2, we define the new three parame-
ters distribution by using Patil and Rao,s (1977, 1978) method on geometric distribution which we
call it generalized weighted geometric (GWG) distribution. Then, we reveal that a discrete general-
ized weighted exponential (DGWE) distribution is obtained as its special case. We also propose a
selection model to construct a DGWE distribution. In Section 3, we discuss its several mathematical
aspects such as shape properties, moment generating function, different types of moments, failure
rate function, mean residual life time, stochastic orders, order statistics, entropies and stress-strength
reliability function. Some characterizations for special cases of the class of GWG distributions are
presented in Section 4. In this section, we also reveal that GWG distribution can be viewed as a
generalization of a weighted geometric (WG) distribution proposed by Bhati and Joshi (2015), the
discrete gamma(2, p) and the classic geometric distributions. Maximum likelihood estimation of
the model parameters and the observed information matrix are discussed in Section 5. Finally, in
Section 6, we show GWG distribution,s potential in application by fitting it to rank frequencies of
graphemes in a Slavic language of Makčutek (2008) and compare it with some rival distributions.

2. Definition and Basic Properties

In this section, we introduce the generalized weighted geometric (GWG) distribution by imple-
menting Patil and Rao,s (1977, 1978) method on geometric distribution. Then, we obtain the dis-
crete generalized weighted exponential (DGWE) as a special case of GWG distribution. We also
construct this distribution alternatively by a selection model.

Definition 2.1. Let X1 ∼ G1(1 − p) be a random variable of the classic geometric distribution
G1(1− p) with probability mass function (pmf)

p1(x) = P(X = x) = (1− p)px−1, x = 1,2, .... (2.1)

Then we say that its weighted r.v. X with the weight function w(x) = (1 − pαx)β has a GWG
distribution with parameters α > 0, 0 < p < 1 and β > 0, i.e., when X has the following pmf

p(x) =
w(x)p1(x)
E(w(X1))

=
(1− pαx)β (1− p)px−1

E((1− pαX1)β )
=

(1− pαx)β (1− p)px−1

∑∞
j=0

(β
j

)
(−1) j (1−p)pα j

1−pα j+1

. (2.2)

Clearly, by Equation (2.2) we have

p(x) = A−1 px−1(1− pαx)β x = 1,2, ... (2.3)

where A = ∑∞
j=0

(β
j

)
(−1) j pα j

1−pα j+1 and α > 0,0 < p < 1,β > 0. We shall denote such a distribution
by GWG(α,β , p).
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Now, by inserting the generalized weighted exponential density (1.5) into (1.1) with p = e−λ ,
we obtain a discrete generalized weighted exponential DGWE(α,n, p) distribution with parameters
α > 0, 0 < p < 1 and n ∈ N if

p(x) = P(X = x) =
px−1(1− pαx)n

∑n
j=0

(n
j

)
(−1) j pα j

1−pα j+1

, x ∈ N = {1,2, ...}. (2.4)

That is, GWG(α,β , p) coinsides with the DGWE(α,n, p) when β = n. Using Arellano et al.
(2006),s method of selection model, we can also produce a GWG (a DGWE) distribution as fol-
lows.

Theorem 2.1. Suposse that X ,X1, ...,Xn is a random sample from the classic geometric distribution
G1(1− p) with pmf

p1(x) = P(X = x) = (1− p)px−1, x = 1,2, .... (2.5)

Then, for any β = n and α = m; n,m ∈ N; we have

X
max(X1,X2, ...,Xn)≤ mX ∼ GWG(m,n, p)

Proof. Since X ,X1,X2, ...,Xn are independant discrete random variables and m ∈ N, we obtain

P
(
X = x

max(X1,X2, ...,Xn)≤ mX
)
=

P
(
X = x,max(X1,X2, ..,Xn ≤ mx)

)
P
(
max(X1,X2, ..,Xn ≤ mX)

) ,

=
(1− p)px−1(1− pmx)n

P
(
max(X1,X2, ..,Xn ≤ mX)

) , (2.6)

where

P
(
max(X1,X2, ...,Xn)≤ mX

)
=

∞

∑
x=1

P(X = x)P
(
max(X1,X2, ...,Xn)≤ mx

)
,

= (1− p)
n

∑
j=0

(
n
j

)
(−1) j pm j

1− pm j+1 , (2.7)

which implies the result.
�

Remark 2.1. GWG(α,β , p) distribution reduces to the DGE(γ, p) distribution proposed by Nek-
oukhou et al. (2011) when α = 1, with β = γ −1.

Theorem 2.2. Let X ∼ GWG(α,β , p). The cumulative distribution function (cdf) of X is given by

F(x) = P(X ≤ x) =

{
0 x < 1

1−A−1 ∑∞
j=0(−1) j

(β
j

) p(α j+1)[x]+α j

1−p(α j+1) x ≥ 1,
(2.8)
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Proof. For any x ≥ 1, we can write

F(x) = P(X ≤ x) = A−1
[x]

∑
t=1

pt−1(1− pαt)β ,

= A−1
[x]

∑
t=1

pt−1
∞

∑
j=0

(−1) j
(

β
j

)
pαt j,

= 1−A−1
∞

∑
j=0

(−1) j
(

β
j

)
p(α j+1)[x]+α j

1− p(α j+1) .

Thus, we have the result. �
It, then, follows that the survival function of a GWG(α,β , p) random variable X is given by

F̄(x) = 1−F(x) = A−1
∞

∑
j=0

(−1) j
(

β
j

)
p(α j+1)[x]+α j

1− p(α j+1) , (2.9)

for x > 1.

3. Distributional properties

In this section, we provide several mathematical properties of a GWG distribution. Here, we
describe shape, moment generating function and moment properties and study its failure rate func-
tion, mean residual life time, stochastic orderings, order statistics, entropy and stress-stregnth relia-
bility function.

3.1. Shape properties

Figure 1 illustrates possible shapes of the pmf of a GWG distribution for several selected parameter
values. As we see, it seems that the distribution is unimodal. In what follows, we show that indeed
more strongly the distribution is infact strongly unimodal and thus it is unimodal.

Theorem 3.1. The pmf of a GWG(α,β , p) is strongly unimodal for all α > 0, 0 < p < 1 and β > 0.

Proof. Clearly, p(x), pmf of GWG(α,β , p), satisfies

p(x)
p(x−1)

=
p(1− pαx)β

(1− pα(x−1))β , α > 0, β > 0, 0 < p < 1,

which is a non-increasing function of x. Thus, by a result of keilson and Gerber (1971),
GWG(α,β , p) is logconcave and, consequently, it is strongly unimodal and thus unimodal for all
α > 0, β > 0 and 0 < p < 1. �

It is interesting to note that by a closer look at Figure 1, we can see that the mode of the dis-
tribution moves to the left as α increases for fixed β and p. However, the mode moves to the right
when either p increases and α and β are fixed or when β increases and α and p are fixed.
It is also noted that, however, the distribution in question is not infinitely divisible. This is simply
noticed by property (1.2) in Steutel and van Harn (2004) and the fact that p(0) = 0. Indeed, from
here we may also conclude that a GWG model can not be neither discrete self-decomposable nor
discrete stable (see, Steutel and var Harn (2004)).
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Fig. 1. Plots of pmf of GWG(α,β , p) distributions for selected values of α , β and p.

3.2. Moment generating function and moments

Here, we obtain moment generating function and rth-order moments of a GWG(α,β , p) distribu-
tion. Let MX(t) = E(etX) be the moment generating function (mgf) of a GWG random variable X .
Then, we have the following:

Theorem 3.2. Let X ∼ GWG(α,β , p). Then, mgf of X is given by

MX(t) = A−1
∞

∑
j=0

(−1)−1
(

β
j

)
et pα j

1− et pα j+1 , t < log
1
p
. (3.1)

Proof.

MX(t) = A−1
∞

∑
x=1

ext px−1(1− pαx)β ,

= A−1
∞

∑
x=1

ext px−1
∞

∑
j=0

(−1) j
(

β
j

)
pα jx,

= A−1
∞

∑
j=0

(−1) j
(

β
j

)
et pα j

1− et pα j+1 , t < log
1
p
.

�
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Theorem 3.3. If X ∼ GWG(α,β , p) and µr = E(X r) are rth-order moments about the origin, then
we have

µr = A−1
∞

∑
j=0

r

∑
x=1

(−1) j
(

β
j

)
x!p(α j+1)x−1

(1− pα j+1)x+1 S(r,x), (3.2)

where

S(r,x) =
1
x!

x−1

∑
i=0

(−1)i
(

x
i

)
(x− i)r (3.3)

is the Stirling number of the second kind.

Proof. By using the known equation

∞

∑
x=1

xr px =
r

∑
x=1

S(r,x)
x!px

(1− p)1+x , (3.4)

we obtain

µr = A−1
∞

∑
x=1

xr px−1(1− pαx)β ,

= A−1
∞

∑
x=1

xr px−1
∞

∑
j=0

(−1) j
(

β
j

)
pα jx,

= A−1
∞

∑
j=0

r

∑
x=1

(−1) j
(

β
j

)
x!p(α j+1)x−1

(1− pα j+1)x+1 S(r,x).

As required. �

Hence, the corresponding variance σ 2 = µ2 − µ2
1 , skewness γ1 = (µ3 − 3µ1µ2 + 2µ3

1 )/(µ2 −
µ2

1 )
3
2 and kurtosis γ2 = (µ4 − 4µ1µ3 + 6µ2µ2

1 − 3µ4
1 )/(µ2 − µ2

1 )
2 of GWG(α,β , p) can be easily

obtained using Eq. (3.4) in explicit forms. Figures 2 and 3 plot the mean, variance, skewness and
kurtosis of a GWG(α,β , p) distribution for different selected values of α , β and p. As we see in
Figure 2, the mean and variance are decreasing as α increases when β and p are fixed. Further, the
mean and variance are increasing either when p increases and α and β are fixed or when β increases
and α and p are fixed.
On the other hand, in Figure 3, the skewness and kurtosis are increasing either as α increases and
β and p are fixed or when p decreases and α and β are fixed. Further the skewness and kurtosis are
decreasing as β increases and α and p are fixed.
Now, we obtain the probability weighted moments (PWMs) of a GWG distribution. They are defined
when the ordinary moments of the random variable exist. The PWMs can generally be used for
estimating parameters of a distribution whose inverse form cannot be expressed explicitly. They
may also be used as starting values for maximum likelihood estimates. The (k,r)-th PWM of a
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Fig. 2. Plots of mean, variance of a GWG(α,β , p) distribution for different values of α , β and p.

discrete random variable X with pmf p(x) is formally defined by

τk,r = E[XkF(X)r] =
∞

∑
x=1

xkF(x)r p(x). (3.5)

Thus, by using the identity

( ∞

∑
j=0

a jx j)t
=

∞

∑
j=0

dt, jx j, (3.6)

where dt, j = ( ja0)
−1 ∑ j

m=1[m(t +1)− j]amdt, j−m and dt,0 = at
0 which is defined by Gradshteyn and

Ryzhik (2007) for a positive integer t and Equation (3.5), we have
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Fig. 3. Plots of skewness and kurtosis of a GWG(α,β , p) distribution for different values of α , β and p.

τk,r =
∞

∑
x=1

xk
{

1−A−1
∞

∑
j=0

A j p(α j+1)x
}r

A−1 px−1(1− pαx)β ,

=
∞

∑
x=1

r

∑
t=0

A−t−1
(

r
t

)
(−1)txk

{ ∞

∑
j=0

A j pα jx
}t

pxt+x−1(1− pαx)β ,

=
∞

∑
x=1

r

∑
t=0

∞

∑
l, j=0

dt, jA−t−1
(

r
t

)(
β
l

)
(−1)t+lxk p jαx+αxl+xt+x−1,

=
∞

∑
l, j=0

k

∑
x=1

r

∑
t=0

dt, jA−t−1
(

r
t

)(
β
l

)
(−1)t+l S(k,x)x!pαx( j+l)+xt+x−1

(1− pα( j+l)+t+1)x+1 , (3.7)
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where A j = (−1) j
(β

j

) pα j

1−p(α j+1) , A = ∑∞
j=0 A j, dt, j =

1−p
j ∑ j

m=1[m(t +1)− j]Am and dt,0 =
1

(1−p)2 .

3.3. Failure rate function and mean residual lifetime

Now we consider failure rate and mean residual life functions of a GWG distribution. The failure
rate function is one of the most popular concepts in reliability studies. If r(t) = p(x)/F̄(x) is the
failure rate function of a GWG random variable X , then based on (2.1) and (2.8) we have

r(x) =
(1− pαx)β

∑∞
j=0 A j pα jx+1 , x = 1,2, .... (3.8)

Remark 3.1. By Theorem 3.1., since p(x) is log-concave, the failure rate function r(x) is a non-
decreasing function of x.

Figures 4 and 5 illustrate the failure rate functions of a GWG distribution for different values of
α , β and p. A popular property of a lifetime distribution is its mean residual lifetime. For a GWG
distribution it is not difficult to see that

Pr[X − x > y|X > x] =
∑∞

j=0 A j p(α j+1)(x+y)

∑∞
j=0 A j p(α j+1)x , (3.9)

for x = 1,2, ... and y = 0,1, .... Thus, from Eq. (3.9), the mean residual lifetime of X is obtained as

m(x) = E(X − x|X > x) =
∑∞

j=0
A j pα jx

1−p(α j+1)

∑∞
j=0 A j pα jx , (3.10)

for x = 1,2, ....

Fig. 4. Failure rate function of a GWG(α,β , p) distribution for fixed p = 0.9 and different values of α and β .

Journal of Statistical Theory and Applications, Vol. 16, No. 4 (December 2017) 522–546
___________________________________________________________________________________________________________

531



Fig. 5. Failure rate function of a GWG(α,β , p) distribution for fixed α = 0.5 and different values of β and p.

Remark 3.2. Since the failure rate function is non-decreasing, the mean residual life function m(x)
is non-increasing of x.

Figures 6 and 7 illustrate the mean residual functions of a GWG distribution for different values
of α , β and p.

Fig. 6. Mean residual function of GWG(α,β , p) distribution for fixed α = 0.5 and different values of β and p.
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Fig. 7. Mean residual function of GWG(α,β , p) distribution for fixed p = 0.9 and different values of α and β .

3.4. Stochastic orders

Stochastic ordering is an important measure to judge comparative behaviours of random variables.
There are many types of stochastic orderings with different implications and applications (see
Shaked and Shanthikumar (2007) for detail). In this note, first we give a short review of defini-
tions of the required stochastic orders: the likelihood ratio order (≤lr), the usual stochastic order
(≤st), the hazard rate order (≤hr) and the expectation order (≤E).

Definition 3.1. Let X and Y be two discrete random variables with probability mass functions pX

and pY , respectively. Then, we have

(a) X ≤lr Y if pY (x)/pX(x) is an increasing function in x.
(b) X ≤st Y if P(X ≥ x)≤ P(Y ≥ x) for all x.
(c) X ≤hr Y if pY (x)/P(Y ≥ x)≤ pX(x)/P(X ≥ x) for all x.
(d) X ≤E Y if E(X)≤ E(Y ).

Theorem 3.4. Let X ∼ G1(1− p) and Y ∼ GWG(α,β , p). Then, X ≤lr (≤hr,≤st and ≤E)Y .

Proof. Since

pY (x)
pX(x)

=
A−1(1− pαx)β

(1− p)
,

is an increasing function in x, then X ≤lr Y . Now, based on the well-known results of Shaked and
Shanthikumar (2007), it follows that X ≤lr Y ⇒X ≤hr Y ⇒X ≤st Y⇒X ≤E Y . As required. �

3.5. Order statistics

Order statistics are among the most fundamental tools in non-parametric statistics and inference.
Here, we discuss some properties of order statistics for the discrete GWG distribution. Suppose that
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X1, ...,Xm is a random sample from GWG(α,β , p) and X1:m, ...,Xm:m are the corresponding order
statistics. Then, the pmf and the cdf of Xi:m for any x ∈ N can be expressed as

P(Xi:m = x) =
m!

(i−1)!(m− i)!

∫ F(x)

F(x−1)
ui−1(1−u)(m−i)du,

=
m!

(i−1)!(m− i)!

m−i

∑
k=0

(−1)k
(

m− i
k

)∫ F(x)

F(x−1)
ui+k−1du,

=
m!

(i−1)!(m− i)!

m−i

∑
k=0

(
m− i

k

)
(−1)k

(i+ k)

{
i+k

∑
t=0

A−t
(

i+ k
t

)
(−1)t p[x]t

{ ∞

∑
j=0

A j pα[x] j
}t
,

−
i+k

∑
t=0

A−t
(

i+ k
t

)
(−1)t p[x−1]t

{ ∞

∑
j=0

A j pα[x−1] j
}t
}
,

=
m!

(i−1)!(m− i)!

m−i

∑
k=0

(
m− i

k

)
(−1)k

(i+ k)

{
∞

∑
j=0

i+k

∑
t=0

dt, jA−t
(

i+ k
t

)
(−1)t p[x]t+α[x] j,

−
∞

∑
j=0

i+k

∑
t=0

dt, jA−t
(

i+ k
t

)
(−1)t p[x−1]t+α[x−1] j

}
,

=
∞

∑
j=0

m−i

∑
k=0

i+k

∑
t=0

dt, jA−t(−1)t+km!(i+ k−1)!
(i−1)!t!(i+ k− t)!k!(m− i− k)!

{
p(t+α j)[x]− p(t+α j)[x−1]

}
(3.11)

and

P(Xi:m ≤ x) =
m

∑
l=i

(
m
l

)
(F(x))l(1−F(x))m−l,

=
m!

(i−1)!(m− i)!

∫ F(x)

0
ui−1(1−u)(m−i)du,

=
m!

(i−1)!(m− i)!

m−i

∑
k=0

(
m− i

k

)
(−1)k

(i+ k)

[
1−A−1

n

∑
j=0

A j p(α j+1)[x]
]i+k

,

=
∞

∑
j=0

m−i

∑
k=0

i+k

∑
t=0

dt, jA−t(−1)t+km!(i+ k−1)!
(i−1)!t!(i+ k− t)!k!(m− i− k)!

p(t+α j)[x] (3.12)

respectively.
Moments of order statistics play an important role in quality control testing and reliability. Now, we
provide the rth-order moment of Xi:m from a GWG distribution as follows

E(X r
i:m) =

∞

∑
x=1

∞

∑
j=0

m−i

∑
k=0

i+k

∑
t=0

xr dt, jA−t(−1)t+km!(i+ k−1)!
(i−1)!t!(i+ k− t)!k!(m− i− k)!

{
p(t+α j)[x]− p(t+α j)[x−1]

}
,

=
∞

∑
j=0

m−i

∑
k=0

i+k

∑
t=0

dt, jA−t(−1)t+km!(i+ k−1)!
(i−1)!t!(i+ k− t)!k!(m− i− k)!

{
∞

∑
x=1

xr p(t+α j)x −
∞

∑
x=1

xr p(t+α j)(x−1)

}
,

=
∞

∑
j=0

m−i

∑
k=0

i+k

∑
t=0

r

∑
x=1

dt, jA−t(−1)t+km!(i+ k−1)!S(r,x)x!
(i−1)!t!(i+ k− t)!k!(m− i− k)!

× p(t+α j)(x−1)(pt+α j −1)
(1− pt+α j)(x+1) , (3.13)

where S(r,x) can be obtained from Eq. (3.3).
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3.6. Entropies

An entropy is a measure of unpredictability or uncertainty of a random variable. It has been used in
various situations in science and engineering. Three of the most popular entropies and information
indices are the Renyi, Mathai-Haubold and Shannon entropies. For a discrete random variable X
with pmf p(.), Renyi, Mathai-Haubold and Shannon entropies are defined as

JR(γ) =
1

1− γ
log

{ ∞

∑
x=1

p(x)γ
}
,

JMH(δ ) =
∑∞

x=1
[
p(x)

]2−δ −1
δ −1

and E
{
− log p(X)

}
, respectively, where γ > 0, γ ̸= 1, δ ̸= 1 and δ < 2. The Mathai-Haubold

entropy is an inaccuracy measure through disturbance or distortion of a systems. In what follows,
we obtain their explicit forms for a GWG distribution.

Theorem 3.5. The Renyi entropy of the GWG(α,β , p) distribution is

JR(γ) =
1

1− γ
log

[
∞

∑
k=0

(
γβ

j

)
(−1)k A−γ pαk

1− p(αk+γ)

]
. (3.14)

Proof. Using Taylor series expansion

(1− x)l =
∞

∑
j=0

(−1) j
(

l
j

)
x j,

for l ∈ R and |x|< 1 we have
∞

∑
x=1

p(x)γ =
∞

∑
x=1

A−γ pγx−γ(1− pαx)γβ ,

=
∞

∑
k=0

∞

∑
x=1

(
γβ
k

)
(−1)kA−γ p(αk+γ)x−γ ,

=
∞

∑
k=0

(
γβ

j

)
(−1)k A−γ pαk

1− p(αk+γ) . (3.15)

Thus, the proof is straightforward. �

Theorem 3.6. The Mathai-Haubold entropy of a GWG(α,β , p) distribution is

JMH(δ ) =
1

δ −1

[
∞

∑
k=0

(
2β −δβ

k

)
(−1)k Aδ−2 p(αk)

1− p(αk+2−δ ) −1

]
. (3.16)

Proof. Since

∞

∑
x=1

p(x)2−δ =
∞

∑
k=0

(
2β −δβ

k

)
(−1)k Aδ−2 p(αk)

1− p(αk+2−δ ) ,

the proof is complete. �
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Theorem 3.7. The Shannon entropy of a GWG(α,β , p) distribution is

E
{
− log p(X)

}
= logA+(A−1

∞

∑
j=0

(−1) j
(

β
j

)
pα j

(1− pα j+1)2 −1)(log p)

−βA−1
∞

∑
k=0

∞

∑
j=0

pα(k+ j+1)

(k+1)(1− pα(k+ j+1)+1)
. (3.17)

Proof.

E
{
− log p(X)

}
= logA+(E(X)−1)(log p)+βE(log(1− pαX)),

= logA+(E(X)−1)(log p)−β
∞

∑
k=0

E(pα(k+1)X)

k+1
,

= logA+(A−1
∞

∑
j=0

(−1) j
(

β
j

)
pα j

(1− pα j+1)2 −1)(log p)

−βA−1
∞

∑
k=0

∞

∑
j=0

pα(k+ j+1)

(k+1)(1− pα(k+ j+1)+1)
. (3.18)

�

Remark 3.3. We may observe that Shannon entropy (3.17) is a particular case of the Renyi entropy
(3.14) when γ ↑ 1.

3.7. Stress-strength reliability function(R = P(X < Y ))

In the context of reliability, R = P(X < Y ) is widely known as the stress-strength of a model: if X
denotes the stress that a system is subjected to and Y is the strength of the system, then R=P(X <Y )
is the probability of the reliability of the system. Now, suppose that X ∼ GWG(α1,β1, p1) and
Y ∼ GWG(α2,β2, p2) are two independent random variables. Then, the stress-strength reliability
function R = P(X < Y ) is given by

R = P(X < Y ) =
∞

∑
x=1

P(Y > x)P(X = x),

=
∞

∑
x=1

A−1
2

∞

∑
j=0

A2 j p
(α2 j+1)x
2 A−1

1 px−1
1 (1− pα1x

1 )β1 ,

=
(A1A2)

−1

p1

∞

∑
j=0

∞

∑
l=0

A2 j(−1)l
(

β1

l

) ∞

∑
x=1

(pα2 j+1
2 pα1l+1

1 )x,

=(A1A2)
−1

∞

∑
j=0

∞

∑
l=0

A2 j(−1)l
(

β1

l

)
pα2 j+1

2 pα1l
1

1− pα2 j+1
2 pα1l+1

1

, (3.19)

where A2 j = (−1) j
(β2

j

) pα2 j
2

1−pα2 j+1
2

.

The stress-strength reliability function (3.19) for different values of α1, β1, p1 and α2, β2, p2 are
computed in Table 1 below for illustration. As we see, R is increasing as α1, β2 and p2 increase and
it is decreasing as α2, β1 and p1 increase.
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Table 1. R = P(X < Y ) for different values of (α1,β1, p1) and (α2,β2, p2)

β1 1
β2 1 4
(α2, p2)/(α1, p1) (1, 0.3) (1, 0.9) (4, 0.3) (4, 0.9) (1, 0.3) (1, 0.9) (4, 0.3) (4, 0.9)
(1, 0.3) 0.2628 0.0128 0.2801 0.0253 0.4238 0.0219 0.4500 0.0430
(1, 0.9) 0.9620 0.4824 0.9655 0.5754 .9992 0.7011 0.9993 0.7808
(4, 0.3) 0.2171 0.0104 0.2317 0.0206 0.2208 0.0106 0.2356 0.0209
(4, 0.9) 0.9255 0.3867 0.9317 0.4779 0.9862 0.4736 0.9884 0.5745

β1 4
β2 1 4
(α2, p2)/(α1, p1) (1, 0.3) (1, 0.9) (4, 0.3) (4, 0.9) (1, 0.3) (1, 0.9) (4, 0.3) (4, 0.9)
(1, 0.3) 0.2018 0.0002 0.2787 0.0044 0.3315 0.0004 0.4479 0.0080
(1, 0.9) 0.9489 0.2738 0.9653 0.4889 0.9986 0.4854 0.9993 0.7216
(4, 0.3) 0.1657 0.0001 0.2305 0.0035 0.1685 0.0002 0.2344 0.0035
(4, 0.9) 0.9028 0.1977 0.9312 0.3859 0.9775 0.2522 0.9883 0.4793

4. WG distribution as a special case

In this section, we consider the weighted geometric (WG) distribution which was proposed by
Bhati and Joshi (2015) as a special case of GWG distribution when β = 1 and present some more
characterizations and convolution properties for the distribution in such a case. Thus, a random
variable X has a WG distribution if its pmf takes the form

P(X = x) =
(1− p)(1− pα+1)

(1− pα)
px−1(1− pαx), x ∈ N = {1,2, ...}. (4.1)

where α > 0 and 0 < p < 1. Infact, WG distribution is a discrete version of WE distribution (1.3),
which was constructed by inserting the weighted exponential density (1.3) into (1.1).

Remark 4.1. We can easily observe that

(i) The WG distribution reduces to

p1(x) = P(X = x) = (1− p)px−1, x = 1,2, ..., (4.2)

i.e., the classic geometric distribution G1(1− p), when α −→ ∞.
(ii) When α −→ 0, WG distribution reduces to

p1(x) = P(X = x) =
(1− p)2

p
xpx, x = 1,2, ..., (4.3)

which is the pmf of the discrete gamma distribution with parameters 2 and p.

The corresponding cdf and failure rate of the WG distribution are

F(x) = 1−
{

1− pα+1 − pα([x]+1)(1− p)
}

1− pα p[x] x ≥ 1, (4.4)

and

r(x) =
(1− p)(1− pα+1)px−1(1− pαx){

1− pα+1 − pα(x+1)(1− p)
}

px
, x = 1,2, ..., (4.5)

respectively.
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Remark 4.2. We may note that the failure rate function r(x) of a WG(α, p) is bounded and we
have

0 < r(x)<
1− p

p
,

where 1−p
p is the failure rate of the G1(1− p) distribution.

Also, the moment generating function and mean residual life time of a WG(α, p) distribution
are

MX(t) =
(1− p)(1− pα+1)et

(1− pet)(1− pα+1et)
. (4.6)

and

m(x) = E(X − x|X > x) =
(1− pα+1)2 − (1− p)2 pα(x+1)

{1− pα+1 − pα(x+1)(1− p)}(1− pα+1)(1− p)
, (4.7)

respectively.

Remark 4.3. It is interesting to observe that the mean residual life function is also bounded and we
have

(1− pα+2)

(1− p)(1− pα+1)
< m(x)<

1
1− p

.

Bhati and Joshi (2015) by using mgf (4.6) for a WG distribution indicated that a discrete random
variable X is WG(α, p) if, and only if, it can be decomposed as

X d
=U +V (4.8)

where U ∼ G0(1− p) and V ∼ G1(1− pα+1) are two independent random variables. Based on
(4.8), since discrete strongly unimodal distributions are closed under convolutions and geometric
distribution is strongly unimodal, then, WG(α, p) distribution is strongly unimodal and thus it is
unimodal which was obviously expected by Theorem 3.1.
Now, let G0(1− p), nb0(r, p) and nb1(r, p) represent geometric, negative binomial of the first type
and negative binomial of the second type distributions with probability mass functions

p0(x) = (1− p)px, x = 0,1,2, ..., (4.9)

p0,r(x) =
(

x+ r−1
x

)
px(1− p)r, x = 0,1,2, ..., (4.10)

and

p1,r(x) =
(

x−1
x− r

)
px−r(1− p)r, x = r,r+1,r+2, ..., (4.11)

respectively. Then, by considering Eq.,s (3.1) and (4.8) the following convolution properties are
immediate.
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Theorem 4.1. Suppose that Y1 ∼ nb0(n,1 − p) and Y2 ∼ nb1(n,1 − pα+1) are two independent
random variables and X1,X2, ...,Xn is a random sample of size n from X. Then for α > 0

X1 +X2 + ...+Xn
d
= Y1 +Y2 (4.12)

if, and only if, X ∼WG(α, p).

Proof. The proof is straightforward. �

Theorem 4.2. Suppose that Y1 ∼ G0(1− p), Y2 ∼ G0(1− pα+1), Y3 ∼ G1(1− p2α+1) and Y
′
4 ∼

Ber( pα+1

1+pα+1 ) are independent random variables. Then, for α > 0

X d
= Y1 +Y2 +Y3 +Y

′
4 (4.13)

if, and only if, X ∼ GWG(α,2, p).

Proof. By mgf (3.1), for β = 2 we have

MX(t) =
(1− p)(1− pα+1)(1− p2α+1)(1+ pα+1et)et

(1− pet)(1− pα+1et)(1− p2α+1et)(1+ pα+1)

=MY1(t)MY2(t)MY3(t)MY4
′ (t) (4.14)

which implies the result. �
Note that Eq.,s (4.8) and (4.13) can be used for generating GWG(α,1, p) and GWG(α,2, p)

distributions, respectively.

5. Maximum Likelihood Estimation(MLE)

In this section, we discuss estimation of parameters of a GWG(α,β , p) distribution, by the maxi-
mum likelihood method. Let x1, ...,xm be m observations of a random sample from a GWG distri-
bution with the vector parameter Θ = (α,β , p). If we rewrite pmf of a GWG(α,β , p) distribution
as

p(x) = P(X = x) =
px(1− pαx)β

∑∞
t=1 pt(1− pαt)β ,

the log-likelihood function for Θ = (α,β , p) is given by

ℓm(Θ) =
m

∑
i=1

xi log p+β
m

∑
i=1

log(1− pαxi)−m log
∞

∑
t=1

pt(1− pαt)β .

Therefore the first derivatives of ℓm(Θ) with respect to the parameters α , β and p are:

∂ℓm(Θ)

∂α
=−β

m

∑
i=1

xi pαxi log p
1− pαxi

+m
∑∞

t=1 tβ pt(α+1)(1− pαt)β−1 log p
∑∞

t=1 pt(1− pαt)β = 0,

∂ℓm(Θ)

∂β
=

m

∑
i=1

log(1− pαxi)−m
∑∞

t=1 pt(1− pαt)β log(1− pαt)

∑∞
t=1 pt(1− pαt)β = 0,
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and

∂ℓm(Θ)

∂ p
=

∑m
i=1 xi

p
−β

m

∑
i=1

αxi pαxi−1

1− pαxi
−m

∑∞
t=1 t pt−1(1− pαt)β−1(1− pαt −βα pαt)

∑∞
t=1 pt(1− pαt)β = 0.

Solutions of above equations yeild the MLE of Θ = (α,β , p) which can be obtained using the
function ”optim” in the statistical software R. For interval estimation and hypothesis testings of the
model parameters, we require the information matrix I(θ) = E[− ∂ 2ℓn(Θ)

∂Θ2 ], where

∂ 2ℓn(Θ)

∂Θ2 =


∂ 2ℓn(Θ)

∂α2
∂ 2ℓn(Θ)
∂α∂β

∂ 2ℓn(Θ)
∂α∂ p

∂ 2ℓn(Θ)
∂β∂α

∂ 2ℓn(Θ)
∂β 2

∂ 2ℓn(Θ)
∂β∂ p

∂ 2ℓn(Θ)
∂ p∂α

∂ 2ℓn(Θ)
∂ p∂β

∂ 2ℓn(Θ)
∂ p2

 ,

with

∂ 2ℓn(Θ)

∂α2 =−β
m

∑
i=1

x2
i pαxi(log p)2

(1− pαxi)2 +m
∑∞

t=1 t2β pt(α+1)(1− pαt)β−2(log p)2(1−β pαt)

∑∞
t=1 pt(1− pαt)β ,

+m
[∑∞

t=1 tβ pt(α+1)(1− pαt)β−1 log p]2

[∑∞
t=1 pt(1− pαt)β ]2

,

∂ 2ℓn(Θ)

∂β 2 =−m
∑∞

t=1 pt(1− pαt)β [log(1− pαt)]2

∑∞
t=1 pt(1− pαt)β +m

[∑∞
t=1 pt(1− pαt)β log(1− pαt)]2

[∑∞
t=1 pt(1− pαt)β ]2

,

∂ 2ℓn(Θ)

∂ p2 =− ∑m
i=1 xi

p2 −β
m

∑
i=1

αxi(αxi −1)pαxi−2

1− pαxi
−β

m

∑
i=1

(αxi)
2 p2αxi−2

(1− pαxi)2

−m
∑∞

t=1(1−β )αt2 pαt+t−2(1− pαt)β−2(1− pαt −βα pαt)

∑∞
t=1 pt(1− pαt)β ,

−m
∑∞

t=1[(t −1)pt−2 − (αt + t −1)pαt+t−2 −βα(αt + t −1)pαt+t−2][t(1− pαt)β−1]

∑∞
t=1 pt(1− pαt)β ,

+m
[∑∞

t=1 t pt−1(1− pαt)β−1(1− pαt −αβ pαt)]2

[∑∞
t=1 pt(1− pαt)β ]2

, ,
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Table 2. MLEs and standard errors of α , β and p in a GWG(α ,β , p) distribution for different values of m and β = 1.
α .5
p 0.3 0.9
m 100 500 1000 5000 100 500 1000 5000
α̂ 0.6623 0.3920 0.4578 0.4845 0.6005 0.5153 0.4576 0.4843
β̂ 1.3680 1.2967 1.1006 1.0615 1.1357 1.0873 1.0431 1.0086
p̂ 0.2954 0.2772 0.2773 0.2940 0.8951 0.8953 0.8968 0.8985
Ŝ.E(α̂) 0.1618 0.1226 0.1002 0.0315 0.3994 0.1365 0.0814 0.0118
Ŝ.E(β̂ ) 0.0931 0.0301 0.0330 0.0051 0.1045 0.0284 0.0092 0.0012
Ŝ.E(p̂) 0.0467 0.0411 0.0320 0.0131 0.0071 0.0079 0.0056 0.0003
α 1
p 0.3 0.9
m 100 500 1000 5000 100 500 1000 5000
α̂ 1.6840 0.9267 0.9453 1.0146 1.1607 1.2100 1.0129 0.9526
β̂ 1.9557 1.2489 1.1082 1.0212 1.2956 1.0790 1.0887 0.9980
p̂ 0.2983 0.2948 0.2875 0.2992 0.8900 0.9023 0.8965 0.8989
Ŝ.E(α̂) 0.3487 0.0614 0.0328 0.0180 0.5781 0.1139 0.0730 0.0154
Ŝ.E(β̂ ) 0.1759 0.0307 0.0126 0.0053 0.1916 0.0249 0.0152 0.0022
Ŝ.E(p̂) 0.0052 0.0043 0.0022 0.0009 0.0102 0.0015 0.0018 0.0002
α 5
p 0.3 0.9
m 100 500 1000 5000 100 500 1000 5000
α̂ 7.5890 6.3035 5.6611 5.2121 4.9608 5.5291 5.2609 5.0578
β̂ 2.0001 1.3491 1.2546 1.0040 1.2874 1.1145 1.0502 1.0066
p̂ 0.2758 0.2914 0.2972 0.2977 0.8963 0.8990 0.9003 0.9002
Ŝ.E(α̂) 0.9889 0.6733 0.2890 0.1842 0.2979 0.2372 0.1911 0.0308
Ŝ.E(β̂ ) 0.7762 0.5082 0.4806 0.0313 0.0776 0.0516 0.0208 0.0040
Ŝ.E(p̂) 0.0307 0.0029 0.0006 0.0002 0.0012 0.0009 0.0005 0.0000

∂ 2ℓn(Θ)

∂α∂β
=−

m

∑
i=1

xi pαxi log p
1− pαxi

+m
∑∞

t=1 t pt(α+1) log p{((1− pαt)β−1)+β (1− pαt)β−1 log(1− pαt)}
∑∞

t=1 pt(1− pαt)β ,

−m
[∑∞

t=1 pt(1− pαt)β log(1− pαt)]× [∑∞
t=1 tβ pt(α+1)(1− pαt)β−1 log p]

(∑∞
t=1 pt(1− pαt)β )2 ,

∂ 2ℓn(Θ)

∂ p∂α
=m

∑∞
t=1 t2 p(α+1)t−1 log p(β −1)(1− pαt)β−2(1− pαt −βα pαt)

∑∞
t=1 pt(1− pαt)β ,

+m
∑∞

t=1 t pt−1{t pαt log p+β pαt +βαt pαt log p}{(1− pαt)β−1}
∑∞

t=1 pt(1− pαt)β ,

+m
{∑∞

t=1 t p(α+1)tβ log p(1− pαt)β−1}{∑∞
t=1 t pt−1(1− pαt)β−1(1− pαt −βα pαt)}

(∑∞
t=1 pt(1− pαt)β )2 ,

−β
m

∑
i=1

xi pαxi−1(1+ xiα log p− pαxi)

(1− pαxi)2

and
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Table 3. MLEs and standard errors of α , β and p in a GWG(α,β , p) distribution for different values of m and β = 2.
α 0.5
p 0.3 0.9
m 100 500 1000 5000 100 500 1000 5000
α̂ 0.8608 0.6421 0.4843 0.5265 0.7211 0.4262 0.4557 0.5248
β̂ 2.0585 2.0612 2.0525 2.0532 2.0708 2.0551 2.0563 2.0524
p̂ 0.3156 0.3023 0.2890 0.3018 0.8992 0.8926 0.8914 0.9009
Ŝ.E(α̂) 0.3908 0.0967 0.0327 0.0084 0.2851 0.0612 0.0432 0.0060
Ŝ.E(β̂ ) 0.2168 0.1162 0.0529 0.0238 0.4453 0.0796 0.0599 0.0236
Ŝ.E(p̂) 0.0348 0.0130 0.0057 0.0013 0.0110 0.0033 0.0026 0.0002
α 1
p 0.3 0.9
m 100 500 1000 5000 100 500 1000 5000
α̂ 1.6928 1.0801 0.9367 0.9803 0.7833 0.9012 1.0248 1.0376
β̂ 2.1716 2.0576 2.0499 2.0546 2.0585 2.0539 2.0561 2.0530
p̂ 0.2698 0.3050 0.2931 0.2977 0.8806 0.8935 0.9000 0.9010
Ŝ.E(α̂) 0.2486 0.0691 0.0415 0.0094 0.3962 0.0743 0.0319 0.0058
Ŝ.E(β̂ ) 0.6727 0.0914 0.0558 0.0247 0.2160 .0763 .0592 0.0237
Ŝ.E(p̂) 0.0472 0.0063 0.0045 0.0008 0.0159 0.0026 0.0008 0.0001
α 5
p 0.3 0.9
m 100 500 1000 5000 100 500 1000 5000
α̂ 6.8484 6.5166 6.3905 5.8762 4.2699 5.3664 4.8635 5.0921
β̂ 2.2124 2.1181 2.0149 1.9823 2.0636 2.0462 2.0430 2.0510
p̂ 0.2724 0.2855 0.2861 0.2948 0.8911 0.8987 0.8991 0.9004
Ŝ.E(α̂) 0.3551 0.2210 0.1549 0.0181 0.8742 0.2110 0.1014 0.0194
Ŝ.E(β̂ ) 0.4979 0.1821 0.1326 0.0358 0.3013 0.0969 0.0846 0.0240
Ŝ.E(p̂) 0.0125 0.0043 0.0038 0.0003 0.0081 0.0010 0.0004 0.0001

∂ 2ℓn(Θ)

∂ p∂β
=−

m

∑
i=1

αxi pαxi−1

1− pαxi
−m

∑∞
t=1 t pt−1(1− pαt)β−1{(1− pαt −αβ pαt) log(1− pαt)−α pαt}

∑∞
t=1 pt(1− pαt)β ,

−m
{∑∞

t=1 pt(1− pαt)β log(1− pαt)}{∑∞
t=1 t pt−1(1− pαt)β−1(1− pαt −βα pαt)}

(∑∞
t=1 pt(1− pαt)β )2 .

Let MLE of Θ = (α,β , p) be Θ̂ = (α̂, β̂ , p̂), then for large m, by assuming the regularity conditions,
the distribution of (α̂−α, β̂ −β , p̂− p) can be approximated by a bivariate normal distribution with
the mean vector zero and variance-covariance matrix I−1.
Tables 2 and 3 show the MLEs and standard errors of parameters of DWE(α,β , p) distribution for
different values of m and β = 1 and β = 2, respectively. We generate these distributions by using
Eq.,s (4.8) and (4.13), respectively. As we see, from these tables, as m increases, we get better
estimates for α , β and p.

6. Application

In this section, we apply a real data set (cf. Makčutek (2008)), concerning rank frequencies of
graphemes in a Slavic language: Slovene, indicated in Table 4, to investigate the advantage of our
proposed model. As mentioned previously, Nekoukhou et al. (2011) and Nekoukhou et al. (2015)
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Table 4. Observed and expected frequencies of GWG(α,β , p),DBE(γ,λ , p), WG(α, p), DGE(γ, p) and G1(1− p)

models

i f (i) êGWG(i) êDBE(i) êWG(i) êDGE(i) êG1(i)

1 32036 28561.85 28912.20 29664.93 21531.44 40314.95
2 31891 31171.01 31520.83 34707.36 24339.73 35134.48
3 31122 30401.11 30645.02 32759.53 24571.81 30619.70
4 27150 28316.37 28438.76 29146.71 23690.92 26685.06
5 22905 25717.69 25733.98 25435.06 22278.32 23256.03
6 16088 22987.84 22922.96 22048.21 20625.58 20267.63
7 16084 20322.77 20202.21 19067.53 18893.86 17663.24
8 15221 17822.48 17668.59 16476.12 17175.91 15393.52
9 14668 15533.91 15364.66 14232.72 15525.16 13415.45

10 14043 13473.64 13302.60 12293.51 13971.32 11691.56
11 13034 11640.81 11477.60 10618.12 12529.31 10189.20
12 10517 10024.74 9875.66 9170.93 11204.78 8879.89
13 10514 8609.54 8478.30 7920.95 9997.45 7738.82
14 10216 7377.00 7265.30 6841.33 8903.47 6744.38
15 9568 6308.29 6216.37 5908.86 7916.81 5877.73
16 7446 5385.02 5312.14 5103.48 7030.25 5122.44
17 6413 4589.85 4534.59 4407.88 6236.05 4464.21
18 5361 3906.81 3867.37 3807.08 5526.35 3890.56
19 5055 3321.39 3295.81 3288.18 4893.48 3390.62
20 4608 2820.64 2806.90 2840.03 4330.10 2954.92
21 2606 2393.05 2389.18 2452.91 3829.31 2575.22
22 2554 2028.47 2032.66 2118.57 3384.69 2244.30
23 2463 1718.05 1728.64 1829.81 2990.38 1955.91
24 1675 1454.05 1469.57 1580.41 2640.99 1704.57
25 497 1229.79 1248.95 1365.01 2331.64 1485.54

N=313735

proposed a discrete analogue of the generalize exponential and a discrete beta-exponential distribu-
tions, respectively, with pmfs

DGE : f (x;γ, p) = kpx−1(1− px)γ−1 x ∈ N = 1,2, ... (6.1)

and

DBE : f (x;γ,λ , p) = cpλ (x−1)(1− px)γ−1 x ∈ N = 1,2, ..., (6.2)

where γ > 0, λ > 0, 0 < p < 1, k = ∑∞
j=0

(γ−1
j

) (−1) j p j

1−p1+ j and c = ∑∞
j=0

(γ−1
j

) (−1) j p j

1−pβ+ j in which(γ−1
j

)
= (γ−1)(γ−2)...(γ− j)

j! . They used the data set presented in Table 4 to reveal the capability of
their distribution and indicated that their model gives better fit than G1(1− p). They used Pearson
χ2 statistic and the discrepancy coefficient C = χ2

N (N is the sample size) as the goodness of fit
criterion (cf. Makčutek, (2008)) to support their claim. In the following, we shall use some more
measures of goodness-of-fit to show that for this data set GWG(α,β , p) provides the best fit com-
pared to G1(1− p), WG(α, p), DGE(γ, p) and DBE(γ,λ , p) models.

Table 4 shows the observed and expected values of the five models. The histogram of the data
and fitted GWG(α,β , p), WG(α, p), DGE(γ, p), DBE(γ,λ , p) and G1(1− p) are plotted in Figure
8. Table 4 lists the MLEs of the parameters, Pearson χ2 statistic, C = χ2

N , negative log-likelihood
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Fig. 8. The histogram of the data of Table 4 and the fitted pmfs of G1(1− p), DGE(γ, p), WG(α , p), DGE(γ,λ , p) and
GWG(α,β , p) .

function (− logL), Akaike Information Criterion, AIC = −2logL+ 2k, and Bayesian information
criterion, BIC =−2logL+k log(N), where k is the number of paramerets in the model and L is the
maximized value of the likelihood function, for all five models.

Analysis of Table 5 indicates that by considering AIC and BIC indices, DWE(α,β , p) provides
the best fit among the four models. Also, by comparing Pearson χ2 statistic and the discrepancy
coefficient C = χ2

N , we conclude that GWG(α,β , p) is the best fit among the five models. Since
DGE(β + 1, p) is a submodel of the class of GWG(α,β , p) distributions, to test DGE(β + 1, p)
versus GWG(α,β , p), we make the following test of hypotheses:

H0 : α = 1(DGE) v.s H1 : α ̸= 1(GWG)

The value of the log likelihood ratio test (LLRT) statistic and its corresponding p-value are 23818.2
and 0, respectively. Therefore, the null hypothesis is rejected at any significance level.

Table 5. MLEs of the parameters, Pearson statistic, discrepancy coefficient, negative log-likelihood, AIC and BIC of

the GWG(α ,β , p), DBE(γ,λ , p), WG(α, p), DGE(γ, p) and G1(1− p) models for data of Table 4.
Distribution p̂ α̂ γ̂ β̂ λ̂ χ2 C − logL AIC BIC

GWG(α,β , p) 0.8325 0.0040 - 0.3908 - 12648.27 0.0403 932040.3 1864087 1864118
DBE(γ,λ , p) 0.8719 - 1.4004 - 1.2011 13008.59 0.0414 932580.0 1865166 1865236

WG(α, p) 0.8637 7.0752 - - - 14398.35 0.0458 934695.4 1869395 1869416
DGE(γ, p) 0.8808 - 1.3950 - - 14592.14 0.0465 943949.7 1887903 1887925
G1(1− p) 0.8715 - - - - 14846.44 0.0473 936366.9 1872738 1872759
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7. Summary and Conclusion

In this article, a new generalization of weighted geometric (GWG) distribution is introduced whose
special case can be viewed as a discrete analogue of generalized weighted exponential distribution.
The proposed new distribution can also be constructed through a selection model. In addition, the
class of GWG distribution enfolds several popular discrete distributions as special cases. Several
important mathematical and structural properties of the GWG distribution are discussed. Our GWG
distribution has provided the best fit among several rival models with one, two and three parameters
for a real data set (cf. Makčutek (2008)).
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