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In this paper, the Fisher information matrix (FIM) contained in n record values is considered for the two param-
eter distributions belong to the exponentiated and inverse exponentiated class of distributions. The problem of
existence and uniqueness of the maximum likelihood estimates of the parameters for these families are also
considered based on record values. The explicit expressions for the elements of the FIM contained in record
values as well as in independent and identically (iid) observations are obtained. The Fisher information (FI)
matrices are compared by using the relative efficiency, the total information and the total variance. A simulation
study is carried out to compare the FI matrices. A real data analysis has also been performed for illustrative
purposes.
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1. Introduction

Suppose X is absolutely continuous with cumulative density function(cdf) F(x;θ) and probabil-
ity density function (pdf) f (x;θ), where θ is a vector parameter (θ1, ...,θm). Under certain reg-
ularity conditions (see, Rao [21]), the FIM, I(X ;θ), is an mxm matrix whose (i, j)th element is
Ii, j =−E

(
∂ 2 ln f (X ;θ)/∂θi∂θ j

)
. The FI plays an important role in statistical inference through the

Cramer-Rao inequality and its association with asymptotic properties of the MLEs. The asymptotic
covariance matrix of the MLE of parameters is given by the inverse of the FIM under regularity
conditions.

The question ”How much information contained in record values?” was addressed by many
authors. Comparison of the FI contained in the first n record values with the FI in n iid observations
from the same distribution was considered by Ahmadi and Arghani [2]. When the record times were
taken into consideration, comparison of these FI was considered by Ahmadi and Arghani [3], Hof-
mann and Nagaraja [17], Hofmann [15] and Hofmann and Balakrishnan [16]. The FI contained in
records, weak records and numbers of records were discussed by Balakrishnan and Stepanov [7].
The FI contained in the first m weak records and the first m (strong) records from a discrete distribu-
tion were obtained by Stepanov et al. [23]. In these studies, the FI for only one unknown parameter

Journal of Statistical Theory and Applications, Vol. 16, No. 4 (December 2017) 589–604
___________________________________________________________________________________________________________

589

Received 16 December 2016

Accepted 9 August 2017

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).



distributions or families were considered based on records and compared with the corresponding FI
contained in iid observations. Moreover, when the underlying distribution has an unknown vector
parameter, the exact form of the FIM are derived in some cases such as Nagaraja and He [20], Mah-
moud and El-Ghafour [19] and Lemonte [18]. However, when the underlying distribution has two
or more unknown parameters, the FIM based on record values has not taken into consideration until
now.

The aim of this paper is to compare the FI matrices of iid observations and records for the two
parameters exponentiated and inverse exponentiated class of distributions. The elements of the FIM
based on n record values with n iid observations are obtained analytically. Then, the differences of
the elements of the matrices and some relations are derived.

When the interested distribution have a vector parameter θ , the FI matrices are not compa-
rable. In this case, some methods are available to compare the FI of a data set about the unknown
parameters and these methods are used greatly in discrimination of the distributions. Recently, there
have been many studies concerning the discrimination purposes. Some recent contributions on the
topic can be found in the papers by Gupta and Kundu [12, 13], Alshunnar et al. [5], Raqab [22]
and Ahmad et al. [1]. In these papers, two different measures, the trace of the FIM and the sum
of the asymptotic variances of the MLEs of the parameters are generally used to discriminate the
interested distributions. In our case, we use these methods to overcome the comparison problem of
the FI matrices based on iid data as well as on record data. Moreover, the relative efficiency of iid
observations to record data is considered by using the ratio of the determinant of the FI matrices.

The paper is organized as follows. In Section 2, the elements of the FIM for the exponentiated
class of distributions are obtained analytically by using both lower record values and iid obser-
vations. The existence and uniqueness of the MLEs of the parameters are proved based on lower
records. The differences of the FI matrices elements are derived analytically. Then, the relative effi-
ciency, the total information and the total variances of the FI matrices are discussed. In Section 3, the
FIM contained in upper record values and iid observations are considered for the inverse exponen-
tiated class of distributions. In Section 4, the obtained results are computed numerically and their
results are listed in tables. A real data set analysis is presented. Moreover, the relative efficiency for
large values of α is displayed in figures. Finally, we conclude the paper in Section 5.

2. Fisher information matrix for the exponentiated class of distributions

The cdf and the pdf of the exponentiated class of distributions are given by

F(x) = (1− e−λQ(x))α , x > 0, α,λ > 0, (2.1)

f (x) = αλQ
′
(x)e−λQ(x)(1− e−λQ(x))α−1, x > 0, α,λ > 0, (2.2)

where Q(x) is an increasing function with Q(0) = 0 and Q(∞) = ∞. This family of distributions
includes the generalized exponential, generalized Rayleigh (Burr Type X) and generalized Pareto
distributions. The existence and uniqueness of the MLEs of the parameters of this family were
proved by Ghitany et al. [9] based on complete data. We establish the existence and uniqueness of
the MLEs based on lower record values in next.
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2.1. Fisher information matrix contained in iid observations

Let X1,X2, ... be a sequence of iid continuous random variables from the exponentiated class of
distributions with cdf (2.1) and pdf (2.2). Then, the joint density of X1, ...,Xn is

f (x1, ...,xn;α,λ ) =

(
n

∏
i=1

Q
′
(xi)

)
α

n
λ

n exp

{
−λ

n

∑
i=1

Q(xi)+(α−1)
n

∑
i=1

ln(1− e−λQ(xi))

}
.

The MLE of α is α̂X = −n/∑
n
i=1 ln(1− e−λ̂X Q(xi)) and the MLE of λ , say λ̂X , is a solution of the

nonlinear equation

n
λ
−

n

∑
i=1

Q(xi)

1− e−λQ(xi)
− n

∑
n
i=1 ln(1− e−λ̂X Q(xi))

n

∑
i=1

Q(xi)e−λQ(xi)

1− e−λQ(xi)
= 0.

The elements of the FIM contained in n iid observations X1,X2, ...,Xn are obtained by using the
formulas 4.253 and 4.261 in Gradshteyn and Ryzhik [11] and are given as

IX
11 = E

(
− ∂ 2

∂α2 ln f (x1, ...,xn;α,λ )

)
=

n
α2 , (2.3)

IX
12 = E

(
− ∂ 2

∂α∂λ
ln f (x1, ...,xn;α,λ )

)
=−

n

∑
i=1

E

(
Q(xi)e−λQ(xi)

1− e−λQ(xi)

)

=
nα

λ

∫ 1

0
t(1− t)α−2 ln tdt

=

{ nα

λ
B(α−1,2){ψ(2)−ψ(α +1)} ,α > 1

nα

λ

∫ 1
0 t(1− t)α−2 ln tdt ,0 < α ≤ 1

(2.4)

and

IX
22 = E

(
− ∂ 2

∂λ 2 ln f (x1, ...,xn;α,λ )

)
=

n
λ 2 +(α−1)

n

∑
i=1

E

(
Q2(xi)e−λQ(xi)(
1− e−λQ(xi)

)2

)

=
n

λ 2 +
nα(α−1)

λ 2

∫ 1

0
t(1− t)α−3(ln t)2dt

=

{
n

λ 2 +
nα(α−1)

λ 2 B(α−2,2)
{
[ψ(2)−ψ(α)]2 +ψ

′
(2)−ψ

′
(α)
}

,α > 2
n

λ 2 +
nα(α−1)

λ 2

∫ 1
0 t(1− t)α−3(ln t)2dt ,0 < α ≤ 2

, (2.5)

where ψ(x) = d lnΓ(x)/dx is a Psi function.
It is known that the MLE of u = u(θ), θ = (θ1,θ2) is asymptotically normal with mean u(θ)

and asymptotic variance

Var(û) =
2

∑
j=1

2

∑
i=1

∂u
∂θi

∂u
∂θ j

I−1
i j ,

where I−1
i j is the (i, j)th element of the inverse of I(θ), see Rao [21]. Therefore, the asymptotic

variance of the MLE of α and λ based on iid observations are obtained as

Var(α̂X) =
IX
22

IX
11IX

22− (IX
12)

2 , Var(λ̂X) =
IX
11

IX
11IX

22− (IX
12)

2 . (2.6)

It can be easily seen that Var(α̂X) is independent of λ .
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2.2. Fisher information matrix contained in lower record values

In this subsection, first the existence and uniqueness of the MLEs are proved, and then the elements
of the FIM and the asymptotic variance of the MLEs are obtained.

Let X1,X2, ... be a sequence of iid continuous random variables with cdf F(x;θ) and pdf f (x;θ).
Let L1,L2, ... be the corresponding sequence of lower record values, then the joint density of
L1, ...,Ln is (see, Arnold et al. [6])

f (l1, ..., ln;θ) =
n−1

∏
i=1

f (li;θ)

F(li;θ)
f (ln;θ), −∞ < ln < ... < l1 < ∞. (2.7)

Let X1,X2, ... be a sequence of iid continuous random variables from the exponentiated class of
distributions with cdf (2.1) and pdf (2.2). Then, the joint density of L1, ...,Ln is given by

f (l1, ..., ln;α,λ ) =

(
n

∏
i=1

Q
′
(li)

)
α

n
λ

n

exp

{
−λ

n

∑
i=1

Q(li)−
n

∑
i=1

ln(1− e−λQ(li))+α ln(1− e−λQ(ln))

}
.

The MLE of α is α̂L =−n/ ln(1− e−λ̂LQ(ln)) where λ̂L is a solution of the nonlinear equation

n
λ
−

n

∑
i=1

Q(li)
1− e−λQ(li)

− n
ln(1− e−λQ(ln))

Q(ln)e−λQ(ln)

1− e−λQ(ln)
= 0.

The following theorem shows the existence and uniqueness of the MLEs of α and λ .

Theorem 2.1. The MLEs of the parameters α and λ are unique and given by α̂L = −n/ ln(1−
e−λ̂LQ(ln)) where λ̂L is the solution of the nonlinear equation:

G(λ ) =
n
λ
−

n

∑
i=1

Q(li)
1− e−λQ(li)

− n
ln(1− e−λQ(ln))

Q(ln)e−λQ(ln)

1− e−λQ(ln)
. (2.8)

Proof It is clear that if the MLE of λ is shown to be unique, then the MLE of α will be unique.
For this reason, we need to show that the solution of the equation G(λ ) = 0 has a unique solution.
First, we investigate the limit of G(λ ) as λ → 0 and λ →∞. Let ti = λQ(li), i = 1, ...,m. Since Q(.)

is an increasing function, Q(0) = 0 and Q(∞) = ∞, Q(.) is a positive function. Then, we have

G(0)≡ lim
λ→0

G(λ ) =
n

∑
i=1

Q(li)lim
ti→0

(
1
ti
− 1

1− e−ti

)
−nQ(ln) lim

tn→0

e−tn/(1− e−tn)

ln(1− e−tn)
.

It is easily seen that G(0) = ∞ by using the following limits lim
t→0

((1/t)− (1/(1− e−t)) =−1/2 and

lim
t→0

(e−t/(1− e−t))/ ln(1− e−t) =−∞. Moreover,

G(∞) ≡ lim
λ→∞

G(λ ) =−
n

∑
i=1

Q(li) lim
λ→∞

(
1

1− e−λQ(li)

)
−nQ(ln) lim

λ→∞

e−λQ(ln)/(1− e−λQ(ln))

ln(1− e−λQ(ln))

= −
n

∑
i=1

Q(li)+nQ(ln) =
n−1

∑
i=1

(Q(ln)−Q(li))< 0,

because of Q(li)> Q(ln) i = 1, ...,n for the lower records l1 > ... > li > ... > ln.

Journal of Statistical Theory and Applications, Vol. 16, No. 4 (December 2017) 589–604
___________________________________________________________________________________________________________

592



Hence, we obtain that limλ→0 G(λ ) = ∞ and limλ→∞ G(λ )< 0. By the intermediate value theo-
rem G(λ ) has at least one root in (0,∞). If it can be shown that ∂G(λ )/∂λ < 0, then the proof will
be completed. The equation (2.8) can be rewritten as follows:

G(λ ) = G1(λ )−nG2(λ ),

where

G1(λ ) =
n
λ
−

n

∑
i=1

Q(li)
1− e−λQ(li)

,

G2(λ ) =
G3(λ )

G4(λ )
, G3(λ ) =

Q(ln)e−λQ(ln)

1− e−λQ(ln)
and G4(λ ) = ln(1− e−λQ(ln)).

It is obtained that

G
′
1(λ ) =

1
λ 2

n

∑
i=1

(
Q2(li)e−λQ(li)(
1− e−λQ(li)

)2 −1

)
=

1
λ 2

n

∑
i=1

(
t2
i e−ti

(1− e−ti)2 −1
)
.

From the Lemma 2 in Ghitany et al. [9], tke−t < (1− e−t)k for all t > 0 and k = 1,2. When k = 2,
we have G

′
1(λ )< 0 by using this inequality. Moreover,

G
′
2(λ ) =

(
G3(λ )

G4(λ )

)2(
−e−λQ(ln)G4(λ )−1

)
.

It is known that − ln(1− x) > x for 0 < x < 1. By using this inequality for x = e−λQ(ln), we
have − ln(1− e−λQ(ln)) > e−λQ(ln). Hence, −eλQ(ln)G4(λ )− 1 > 0 and G

′
2(λ ) > 0. Therefore, it

is obtained that G
′
(λ ) = G

′
1(λ )−nG′2(λ )< 0.

Finally, we will show that the MLEs of α and λ maximizes the log-likelihood function
L(α,λ ; l) ≡ ln f (l1, ..., ln;α,λ ). Let H(α,λ ) be the Hessian matrix of L(α,λ ; l) at (α,λ ). It is
clear that

H11(α̂L, λ̂L) =−
n

α̂2 < 0,

and the determinant of the Hessian matrix

D(α̂L, λ̂L) = H11(α̂L, λ̂L)H22(α̂L, λ̂L)−
(

H12(α̂L, λ̂L)
)2

= − n
α̂2 G

′
1(λ̂L)−

(
G
′
3(λ̂L)

)2(
e−λ̂LQ(ln)G4(λ̂L)+1

)
> 0.

Hence, (α̂L, λ̂L) is the local maximum of L(α,λ ; l). Since there is no singular point of L(α,λ ; l) and
it has a single critical point then, it is enough to show that the absolute maximum of the function is
indeed the local maximum. Assume that there exist a λ̂0 in the domain in which L∗(λ̂0) > L∗(λ̂L),
where L∗(λ̂L) = L(α̂L, λ̂L; l). Since λ̂L is the local maximum there should be some point λ1 in the
neighborhood of λ̂L such that L∗(λ̂L)> L∗(λ1). Let k(λ )= L∗(λ )−L∗(λ̂L) then k(λ̂0)> 0, k(λ1)< 0
and k(λ̂L) = 0. This implies that λ1 is a local minimum of the L∗(a), but λ̂L is the only critical point
so it is a contradiction. Therefore, (α̂L, λ̂L) is the absolute maximum of L(α,λ ; l).
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Next, we will obtain the elements of the FIM and the asymptotic variances of MLEs. The fol-
lowing results are taken from Corollary 2.1 and Corollary 3.1 in Al-Sirehy and Fisher [4] to obtain
the elements of the FIM.

Lemma 2.1. The Beta function B(λ ,µ) is usually defined by the integral

B(λ ,µ) =
∫ 1

0
tλ−1(1− t)µ−1dt,

for λ ,µ > 0 and more generally, the function Bp,q(λ ,µ) is defined by the integral

Bp,q(λ ,µ)≡
∂ p+q

∂λ p∂ µq B(λ ,µ) =
∫ 1

0
tλ−1(ln t)p(1− t)µ−1(ln(1− t))qdt,

for λ ,µ > 0 and p,q = 0,1,2, .... We have the following results for the function Bp,q(λ ,µ).
(i) For λ 6= 0,−1,−2, ..., s = 1,2, ... and p = 0,1,2... we have

Bp,1(λ ,s) =
s−1

∑
i=0

∞

∑
j=1

(
s−1

i

)
(−1)i+p+1 p!

j(λ + i+ j)p+1 .

(ii) For λ 6= 0,−1,−2, ..., s = 1,2, ... and p = 0,1,2... we have

Bp,2(λ ,s) =
s−1

∑
i=0

∞

∑
j=1

(
s−1

i

)
(−1)i+p2φ( j)p!

( j+1)(λ + i+ j+1)p+1 ,

where φ( j) = ∑
j
k=1 k−1 ≡ ψ( j+1)−ψ(1) (see, Gradshteyn and Ryzhik [11]).

First, the FIM contained in a single observation which is the lower record value Li given Li−1 =

li−1 is considered. It is known that the conditional pdf of Li given Li−1 = li−1 is (see, Arnold et
al. [6])

fLi|Li−1(li|Li−1 = li−1) =
f (li;α,λ )

F(li−1;α,λ )
, li < li−1, i = 2,3, ....

The elements of the FIM can be obtained by using Lemma 2.1 and other expansions. We have

IL
11(i) = E

(
− ∂ 2

∂α2 ln fLi|Li−1(li; li−1,α,λ )

)
=

1
α2 , (2.9)

for i = 1,2, ...,n and

IL
12(1) = E

(
− ∂ 2

∂α∂λ
ln f (l1;α,λ )

)
= E

(
−Q(L1)e−λQ(L1)

1− e−λQ(L1)

)

=
α

λ

∫ 1

0
tα−2(1− t) ln(1− t)dt =

α

λ
B0,1(α−1,2), (2.10)

or IL
12(1) can be obtained analytically by using the series expansion of ln(1− t) =−∑

∞
k=1 tk/k as

IL
12(1) =

α

λ

∫ 1

0
tα−2(1− t) ln(1− t)dt =

α

λ

∞

∑
k=1

(
1

α + k
− 1

α + k−1

)
=

α

λ

(
− 1

α

)
=− 1

λ
. (2.11)
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It is easily seen that the partial sum of the above series converges to (−1/α).

IL
12(i) = E

(
− ∂ 2

∂α∂λ
ln fLi|Li−1(li; li−1,α,λ )

)
= E

(
Q(Li−1)e−λQ(Li−1)

1− e−λQ(Li−1)

)
−E

(
Q(Li)e−λQ(Li)

1− e−λQ(Li)

)

= −α i−1(−1)i−2

λΓ(i−1)

∫ 1

0
tα−2(1− t)(ln t)i−2 ln(1− t)dt

+
α i(−1)i−1

λΓ(i)

∫ 1

0
tα−2(1− t)(ln t)i−1 ln(1− t)dt

= −α i−1(−1)i−2

λΓ(i−1)
Bi−2,1(α−1,2)+

α i(−1)i−1

λΓ(i)
Bi−1,1(α−1,2), (2.12)

for i = 2,3, ..,n, α 6= 1, and

IL
22(1) = E

(
− ∂ 2

∂λ 2 ln f (l1;α,λ )

)
=

1
λ 2 +(α−1)E

(
Q2(L1)e−λQ(L1)(
1− e−λQ(L1)

)2

)

=
1

λ 2 +
α(α−1)

λ 2

∫ 1

0
tα−3(1− t)(ln(1− t))2 dt

=
1

λ 2 +
α(α−1)

λ 2 B0,2(α−2,2), (2.13)

IL
22(i) = E

(
− ∂ 2

∂λ 2 ln fLi|Li−1(li; li−1,α,λ )

)
=

1
λ 2 +(α−1)E

(
Q2(Li)e−λQ(Li)(
1− e−λQ(Li)

)2

)
−αE

(
Q2(Li−1)e−λQ(Li−1)(

1− e−λQ(Li−1)
)2

)

=
1

λ 2 +(α−1)
α i(−1)i−1

λ 2Γ(i)

∫ 1

0
tα−3(1− t)(ln t)i−1 (ln(1− t))2 dt

− α i(−1)i−2

λ 2Γ(i−1)

∫ 1

0
tα−3(1− t)(ln t)i−2 (ln(1− t))2 dt

=
1

λ 2 +(α−1)
α i(−1)i−1

λ 2Γ(i)
Bi−1,2(α−2,2)− α i(−1)i−2

λ 2Γ(i−1)
Bi−2,2(α−2,2), (2.14)

for i = 2,3, ...,n, α 6= 1,2.
Second, the FIM contained in n lower record values L1,L2, ...,Ln is considered. The elements of

the FIM are obtained as

IL
11 = E

(
− ∂ 2

∂α2 ln f (l1, ..., ln;α,λ )

)
=

n
α2 , (2.15)

Journal of Statistical Theory and Applications, Vol. 16, No. 4 (December 2017) 589–604
___________________________________________________________________________________________________________

595



IL
12 = E

(
− ∂ 2

∂α∂λ
ln f (l1, ..., ln;α,λ )

)
= E

(
−Q(Ln)e−λQ(Ln)

1− e−λQ(Ln)

)

=
αn(−1)n−1

λΓ(n)

∫ 1

0
tα−2(1− t)(ln t)n−1 ln(1− t)dt

=
αn(−1)n−1

λΓ(n)
Bn−1,1(α−1,2), (2.16)

for n = 1,2, ..., α 6= 1, or IL
12 can be obtained analytically by using the formulas 4.272(6) in Grad-

shteyn and Ryzhik [11] and the series expansion of ln(1− t) =−∑
∞
k=1 tk/k as

IL
12 =

αn

λΓ(n)

∫ 1

0
tα−2(1− t)

(
ln

1
t

)n−1

ln(1− t)dt

= − αn

λΓ(n)

∞

∑
k=1

1
k

∫ 1

0
tα+k−2(1− t)

(
ln

1
t

)n−1

= −αn

λ

∞

∑
k=1

1
k

(
1

(α + k−1)n −
1

(α + k)n

)
.

The partial sum of the above series, Sm, is

Sm =
m

∑
k=1

1
k

(
1

(α + k−1)n −
1

(α + k)n

)
=

1
αn +

1
(α +1)n

(
1
2
−1
)
+

1
(α +2)n

(
1
3
− 1

2

)
+

1
(α +3)n

(
1
4
− 1

3

)
+ (2.17)

...+
1

(α +m−1)n

(
1
m
− 1

m−1

)
− 1

m
1

(α +m)n ,

and, then as m→ ∞, Sm converges to (1/αn)−C2, where C2 is a positive constant depends on α

and n. Hence,

IL
12 =−

αn

λ

(
1

αn −C2
)
=− 1

λ
+

αn

λ
C2. (2.18)

IL
22 = E

(
− ∂ 2

∂λ 2 ln f (l1, ..., ln;α,λ )

)
=

n
λ 2 −

n

∑
i=1

E

(
Q2(Li)e−λQ(Li)(
1− e−λQ(Li)

)2

)
+αE

(
Q2(Ln)e−λQ(Ln)(
1− e−λQ(Ln)

)2

)

=
n

λ 2 −
n

∑
i=1

α i(−1)i−1

λ 2Γ(i)
Bi−1,2(α−2,2)

+
αn+1(−1)n−1

λ 2Γ(n)
Bn−1,2(α−2,2), (2.19)

for n = 1,2, ... and α 6= 1,2. IL
12 and IL

22 can be evaluated by using the numerical integral when
α = 1,2.
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Remark 2.1. From the above results the elements of the FIM contained in n lower record values
L1,L2, ...,Ln can be written as

IL
11 =

n

∑
i=1

IL
11(i), IL

12 =
n

∑
i=1

IL
12(i) and IL

22 =
n

∑
i=1

IL
22(i).

Hence, the asymptotic variance of α̂L and λ̂L based on lower record values are obtained as

Var(α̂L) =
IL
22

IL
11IL

22− (IL
12)

2 , Var(λ̂L) =
IL
11

IL
11IL

22− (IL
12)

2 . (2.20)

It can be easily seen that Var(α̂L) is independent of λ .

2.3. A comparison of the FIM elements of iid observations and lower records

In this subsection, first the differences of the FIM elements of iid random sample and lower record
values, IX

12− IL
12 and IX

22− IL
22, are obtained analytically. Then, the relative efficiency, the total infor-

mation and the total variance are discussed to compare the information measures contained in the
corresponding FI matrices.

From the equations (2.4), (2.10) and (2.11), we have IX
12 = nIL

12(1) = −n/λ . Therefore, the
difference IX

12− IL
12 is easily obtained by using IX

12 and the exact form of IL
12 from equation (2.18)

IX
12− IL

12 =−
(n−1)

λ
− αn

λ
C2 < 0. (2.21)

From the equations (2.5) and (2.13), we have IX
22 = nIL

22(1). By using the series expansion of
Bp,q(λ ,µ) in Lemma 2.1, we have

IX
22− IL

22 =
n

∑
i=2

α(α−1)
λ 2

[
∞

∑
j=1

2φ( j)
j+1

(
1

α + j−1
− 1

α + j

)]

−
n

∑
i=2

α i

λ 2

[
∞

∑
j=1

2φ( j)
j+1

(
α−1

(α + j−1)i −
α−1
(α + j)i −

1
(α + j−1)i−1 +

1
(α + j)i−1

)]
. (2.22)

The difference in equation (2.22) is investigated for two parts according to α .
First, 0 < α < 1 case is considered. In this case, since α > α i, i = 2, ...,n, (α + j−1)i > (α +

j−1), i = 2, ...,n, j = 2,3, ... and φ(1) = 1, we have

IX
22− IL

22 >
n

∑
i=2

α i(α−1)
λ 2

[
∞

∑
j=1

2φ( j)
j+1

(
1

α + j−1
− 1

α + j
− 1

(α + j−1)i +
1

(α + j)i

)]

−
n

∑
i=2

α i

λ 2

[
∞

∑
j=1

2φ( j)
j+1

(
1

(α + j)i−1 −
1

(α + j−1)i−1

)]

>
n

∑
i=2

α i(α−1)
λ 2

∞

∑
j=2

2φ( j)
j+1

(
1

(α + j)i −
1

α + j

)
−

n

∑
i=2

α i

λ 2

∞

∑
j=2

2φ( j)
j+1

(
1

(α + j)i−1 −
1

(α + j−1)i−1

)
+

n

∑
i=2

[
α i(α−1)

λ 2

(
1
α
− 1

α +1
− 1

α i +
1

(α +1)i

)
− α i

λ 2

(
1

(α +1)i−1 −
1

α i−1

)]
. (2.23)
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It is clear that (α + j)i−1 > (α + j−1)i−1 and (α + j)i > α + j for i = 2, ...,n, j = 1,2,3, .... Then,
the first and the second summations in equation (2.23) are positive. Now, we consider the following
series:

D≡
n

∑
i=2

[
α i(α−1)

λ 2

(
1
α
− 1

α +1
− 1

α i +
1

(α +1)i

)
− α i

λ 2

(
1

(α +1)i−1 −
1

α i−1

)]
.

Since, (α +1)i−1 > α +1, (α +1)i > α i and α ≥ α i−1 for i = 2, ...,n, we have

D >
n

∑
i=2

α i

λ 2

[
(α−1)

(
1
α
− 1

α +1
− 1

α i +
1

(α +1)i

)
− 1

α +1
+

1
α

]
=

n

∑
i=2

α i

λ 2

[
1

α +1
+(α−1)

(
1

(α +1)i −
1
α i

)]
> 0. (2.24)

Hence, from the equations (2.23) and (2.24), the difference IX
22− IL

22 > 0.
Second, α > 1 case is considered. From equation (2.22), we have

IX
22− IL

22 =
1

λ 2

n

∑
i=2

∞

∑
j=1

2φ( j)
j+1

[
α(α−1)
α + j−1

− α(α−1)
α + j

− α i(α−1)

(α + j−1)i+

α i(α−1)

(α + j)i +
α i

(α + j−1)i −
α i

(α + j)i−1

]

=
1

λ 2

n

∑
i=2

∞

∑
j=1

2φ( j)
j+1

f (α)

(α + j)i (α + j−1)i , (2.25)

where f (α) = α (α + j)i−1 (α + j−1)i−1 f1(α) and

f1(α) = (α−1)+ j(α + j)
(

α

α + j−1

)i−1

− ( j+1)(α + j−1)
(

α

α + j

)i−1

, (2.26)

for i = 2, ...,n, j = 1,2,3, .... If we can show that f1(α) > 0 for α > 1, then f (α) > 0 and the
summation in equation (2.25) will be positive. f1(α) can be rewritten as

f1(α) = j(α + j)

[(
α

α + j−1

)i−1

−
(

α

α + j

)i−1
]
+(α−1)

[
1−
(

α

α + j

)i−1
]
.

Since α + j > α + j− 1 and α + j > α , we can obtain that f1(α) > 0. Hence, IX
22− IL

22 > 0 is
obtained for α > 1.

Some comparison methods can be used to compare the FIM contained in n record values with
the FIM in n iid observations. We first use the ratio of the determinant of the FI matrices to obtain
the relative efficiency of iid data relative to record data. The relative efficiency is defined as

R− e f f =
det(IX)

det(IL)
.

This measure was also used to compare the FI matrices by different authors such as Barabesi and
El-Sharaawi [8] and Hatefi and Jozani [14]. Since the determinants include series expansion, these
determinants are not compared analytically. However, the relative efficiency of samples is obtained
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numerically in simulation case and its graphs are displayed in figures. If a value of the relative
efficiency is greater than one, it shows that n iid observations provides more information about the
parameters (α,λ ) than record values. In our case, as IX

22− IL
22 and

(
IL
12
)2−

(
IX
12
)2 are not comparable

in the ratio of the determinants, the obtained numerical results can not be derived analytically.
Moreover, it is easily seen that the relative efficiency does not depend on λ but depends on α .
Hence, it is always same for all λ when α is fixed.

In the literature, when the fitted distributions are very close to each other, it is very difficult to
discriminate the different distributions. Some methods are used for discrimination purposes, one of
them to compare the corresponding FI matrices of these distributions based on an interested data
set. It is clear that the comparison is not a trivial when the underlying distribution have a vector
parameter θ . Two different measures, the total information and the total variance are generally used
to compare the FI matrices in the papers Gupta and Kundu [12,13], Alshunnar et al. [5], Raqab [22]
and Ahmad et al. [1]. The total information is computed by using the trace of the corresponding
FIM and the total variance is the sum of the asymptotic variances of the MLEs of the parameters,
i.e. the trace of the inverse of the FIM.

In this paper, we use the aforementioned measures to compare the FIM contained in n record
values with the FIM contained in n iid observations. It can be easily seen that the differences of the
trace of the FI matrices is positive because

Trace(IX)−Trace(IL) = (IX
11− IL

11)+(IX
22− IL

22) = IX
22− IL

22 > 0.

Therefore, the total information of the FIM based on iid observations is always greater than that of
record values. This result is observed in Tables 1-2. Moreover, the total variance of the FI matrices
are computed numerically in simulation case.

3. Fisher information matrix for the inverse exponentiated class of distributions

The inverse exponentiated class of distributions is constructed by using the cdf of Y given in (2.1).
When X = 1/Y , the survival function of X is given by

S(x) = P(X > x) = (1− e−λQ(1/x))α ; x > 0, α,λ > 0, (3.1)

and the corresponding pdf of X is

f (x) = αλ
Q
′
(1/x)
x2 e−λQ(1/x)(1− e−λQ(1/x))α−1; x > 0, α,λ > 0. (3.2)

This family of distributions includes inverted exponentiated exponential, inverted exponentiated
Rayleigh and inverted exponentiated Pareto distributions when Q(1/x) = 1/x, Q(1/x) = 1/x2 and
Q(1/x) = ln(1+1/x), respectively. The existence and uniqueness of the MLEs of the parameters of
this family were considered by Ghitany et al. [10] based on complete, progressively Type-I censored
and progressively Type-II censored data.

Let X1,X2, ... be a sequence of iid continuous random variables from the inverse exponentiated
class of distributions with survival function (3.1) and pdf (3.2). In this section, the FIM contained
in n iid observation X1,X2, ...,Xn and n upper record values are considered.
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The joint density of X1, ...,Xn is

f (x1, ...,xn;α,λ ) =

(
n

∏
i=1

Q
′
(1/xi)

x2
i

)
α

n
λ

n

exp

{
−λ

n

∑
i=1

Q(1/xi)+(α−1)
n

∑
i=1

ln(1− e−λQ(1/xi))

}
.

The elements of the FIM contained in n iid observations X1,X2, ...,Xn are derived. It is observed
that they are the same as in the exponentiated class of distributions case. Therefore, the elements of
the FIM and the asymptotic variance of the MLE of α and λ are given as in (2.3), (2.4), (2.5) and
(2.6), respectively.

Let U1,U2, ...,Un be the corresponding sequence of upper record values. Then, the joint density
of U1,U2, ...,Un is given by

f (u1, ...,un;α,λ ) =

(
n

∏
i=1

Q
′
(1/ui)

u2
i

)
α

n
λ

n

exp

{
−λ

n

∑
i=1

Q(1/ui)−
n

∑
i=1

ln(1− e−λQ(1/ui))+α ln(1− e−λQ(1/un))

}
,

where u1 < ... < un. In this case, the MLE of α is α̂U = −n/ ln(1− e−λ̂U Q(1/un)) where λ̂U is a
solution of the nonlinear equation

H(λ )≡ n
λ
−

n

∑
i=1

Q(1/ui)

1− e−λQ(1/ui)
− n

ln(1− e−λQ(1/un))

Q(1/un)e−λQ(1/un)

1− e−λQ(1/un)
= 0. (3.3)

It is easily seen that Q(1/u1)> ... > Q(1/ui)> ... > Q(1/un) when Q(.) is an increasing function
and u1 < ... < un. Since the nonlinear equations given in (2.8) and (3.3) are the same equations, the
nonlinear equation H(λ ) = 0 has a unique λ̂U solution. Therefore, the MLEs of α and λ are unique
for the inverse exponentiated class of distributions based on upper record values.

The elements of the FIM contained in n upper record values are obtained and they are the same
as in the exponentiated class of distributions case. Thus, the elements of the FIM and the asymptotic
variance of the MLE of α and λ are given as in (2.15), (2.16), (2.19) and (2.20), respectively.

4. A comparison study

In this section, the obtained results in the paper are computed numerically to see which sample have
more information than another. The relative efficiency, the total information and the total variances
of the FI matrices are computed and their results are listed in Table 1 for different sample sizes n and
(α,λ ) values. The relative efficiency of iid data relative to record data, R− e f f , does not depend
on λ and the graphs of R− e f f versus α are also displayed in Figure 1 for different sample sizes
and large values of α .

It is observed that the relative efficiency is always greater than one for all cases in Table 1 and
Figure 1. However, it can be smaller than one for very large values of α . It is observed that the
relative efficiency is smaller than one when α ≥ 3142 and n = 2. The relative efficiency increases as
the sample size n increases and it decreases as α increases when λ is fixed. For example, the relative
efficiency is greater than one when α = 3142 and n = 3. R−e f f > 1 leads to det(IX)> det(IL) and
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Fig. 1. Relative efficiency versus α

then the asymptotic variances of λ̂ , Var(λ̂X) and Var(λ̂L), are always ordered as Var(λ̂X)<Var(λ̂L).
It is also observed that Var(α̂L) < Var(α̂X). Although the asymptotic variances of the MLEs are
ordered, the total variances can not be ordered. Since the total informations, Trace IX and Trace IL,
are ordered as Trace IX >Trace IL, n iid observations have more information than n record values.

Moreover, Monte Carlo simulation is carried out when the underlying distribution is generalized
exponential. The MLEs of α and λ obtained based on iid data as well as on lower records. Their
corresponding FI matrices, relative efficiency, total information and total variances are computed
by using these ML estimates and results are listed in Table 2.

From Table 2, the mean square error (MSE) and the variances of the ML estimates decrease
as the sample size increases, as expected. We have the following orders: MSE(α̂X) > MSE(α̂L),

MSE(λ̂X)< MSE(λ̂L), Var(α̂L)<Var(α̂X), Var(λ̂X)<Var(λ̂L). However, the total variance of IX

is greater than total variance of IL, it is observed in some cases in Table 1.
A real life data set deals with the total seasonal annual rainfall (in inches) recorded at

Los Angeles Civic Center from 1994 to 2007 (season 1 July-30 June) is considered for
illustrative purposes. This data set can be obtained from the Los Angeles Civic website:
htp://www.laalmanac.com/weather/we13.htm. The data are as follows: (24.35, 12.44, 12.4, 31.01,
9.09, 11.57, 17.94, 4.42, 16.42, 9.25, 37.96, 13.19, 3.21). We checked the the validity of the
generalized exponential distribution based on the parameters λ̂ = 0.1166, α̂ = 2.9673, using the
Kolmogorov-Smirnov (K-S) test. It is observed that the K-S distance is 0.12916 with a correspond-
ing p−value is 0.9625. Hence, the generalized exponential distribution provides a very good fit
to this data set. If only the lower record values of the seasonal rainfall have been observed, these
are r = (24.35, 12.44, 12.4, 9.09, 4.42, 3.21). To compare the lower records with the same size
iid observations, we choose the random observations from the same period as x = (31.01, 11.57,
17.94, 16.42, 9.25, 37.96). Based on x, λ̂ = 0.1181, α̂ = 5.8622 and its K-S distance and p−value
are 0.1946 and 0.9438, respectively. Therefore, the generalized exponential distribution provides a
very good fit to x. We compute the MLEs of (α,λ ), an asymptotic variances and total informations
based on lower record values as well as iid observations. These results are listed in Table 3.

From Table 3, it is observed that Var(α̂L) < Var(α̂X), Var(λ̂X) < Var(λ̂L), the total variance
and the total information of data x are greater than that of data r. These results are similar to those
found in the Tables 1 and 2.
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Table 1. Relative efficiency, differences of some elements and trace of the FI matrices and total variances for different
values of α and λ .

α = 0.5, λ = 5
n R− e f f Trace for IX Trace for IL Total Var. IX Total Var. IL Var(α̂X) Var(α̂L) Var(λ̂X) Var(λ̂L)
2 1.6702 8.0425 8.0227 32.8450 54.7218 0.1738 0.1548 32.6713 54.5670
3 2.3344 12.0638 12.0229 21.8967 50.9427 0.1158 0.0969 21.7808 50.8458
4 2.9970 16.0851 16.0229 16.4225 49.0282 0.0869 0.0701 16.3356 48.9581
5 1.9132 20.1064 20.0229 13.1380 47.8875 0.0695 0.0548 13.0685 47.8328
8 5.6553 32.1702 32.0229 8.2113 46.2248 0.0434 0.0331 8.1678 46.1918

10 6.9885 40.2127 40.0229 6.5690 45.6909 0.0348 0.0261 6.5343 45.6648
12 8.3229 48.2553 48.0229 5.4742 45.3415 0.0290 0.0216 5.4452 45.3199
15 10.3256 60.3191 60.0229 4.3793 44.9973 0.0232 0.0172 4.3562 44.9802
20 13.6651 80.4255 80.0229 3.2845 44.6582 0.0174 0.0128 3.2671 44.6455
25 17.0054 100.5318 100.0229 2.6276 44.4572 0.0139 0.0102 2.6137 44.4470
50 33.7111 201.0636 200.0229 1.3138 44.0604 0.0070 0.0050 1.3069 44.0554

α = 1.5, λ = 5
2 1.4801 1.0026 0.9543 19.7348 27.8016 2.2390 1.9061 17.4958 25.8955
3 1.9178 1.5040 1.4009 13.1565 23.5037 1.4927 1.1344 11.6639 22.3693
4 2.3365 2.0053 1.8461 9.8674 21.2250 1.1195 0.7853 8.7479 20.4397
5 2.7469 2.5066 2.2908 7.8939 19.8170 0.8956 0.5930 6.9983 19.2240
8 3.9672 4.0106 3.6242 4.9337 17.6876 0.5598 0.3352 4.3740 17.3254

10 4.7830 5.0132 4.5131 3.9470 16.9953 0.4478 0.2587 3.4992 16.7366
12 5.6025 6.0159 5.4020 3.2891 16.5470 0.3732 0.2104 2.9160 16.3366
15 6.8370 7.5198 6.7354 2.6313 16.1136 0.2985 0.1643 2.3328 15.9492
20 8.9034 10.0264 8.9576 1.9735 15.6976 0.2239 0.1204 1.7496 15.5772
25 10.9754 12.5330 11.1798 1.5788 15.4569 0.1791 0.0950 1.3997 15.3619
50 21.3602 25.0661 22.2909 0.7894 14.9948 0.0896 0.0462 0.6998 14.9486

α = 2, λ = 5
2 1.4384 0.6447 0.5853 19.9405 26.0415 4.4746 3.7950 15.4659 22.2465
3 1.8262 0.9670 0.8392 13.2937 21.0674 2.9830 2.2384 10.3106 18.8290
4 2.1898 1.2893 1.0906 9.9702 18.4676 2.2373 1.5337 7.7330 16.9339
5 2.5418 1.6116 1.3411 7.9762 16.8708 1.7898 1.1465 6.1864 15.7243
8 3.5748 2.5786 2.0915 4.9851 14.4545 1.1186 0.6327 3.8665 13.8219

10 4.2614 3.2233 2.5916 3.9881 13.6641 0.8949 0.4829 3.0932 13.1812
12 4.9507 3.8679 3.0916 3.3234 13.1508 0.7458 0.3896 2.5777 12.7612
15 5.9904 4.8349 3.8416 2.6587 12.6547 0.5966 0.3017 2.0621 12.3530
20 7.7345 6.4466 5.0916 1.9940 12.1813 0.4475 0.2191 1.5466 11.9621
25 9.4868 8.0582 6.3416 1.5952 11.9098 0.3580 0.1720 1.2373 11.7378
50 18.2868 16.1165 12.5916 0.7976 11.3958 0.1790 0.0829 0.6186 11.3129

α = 5, λ = 5
2 1.3354 0.3730 0.2678 53.5282 51.3337 42.0465 36.0012 11.4817 15.3325
3 1.2663 0.5594 0.3258 35.6855 33.3258 28.0310 21.0512 7.6545 12.2746
4 1.8375 0.7459 0.3750 26.7641 24.7272 21.0233 14.1781 5.7409 10.5491
5 2.0521 0.9324 0.4202 21.4113 19.8039 16.8186 10.3790 4.5927 9.4249
8 2.6404 1.4919 0.5465 13.3821 12.9442 10.5116 5.3650 2.8704 7.5792

10 3.0121 1.8648 0.6278 10.7056 10.8568 8.4093 3.9400 2.2963 6.9168
12 3.3776 2.2378 0.7084 8.9214 9.5397 7.0078 3.0762 1.9136 6.4635
15 3.9222 2.7972 0.8288 7.1371 8.2942 5.6062 2.2897 1.5309 6.0045
20 4.8313 3.7296 1.0290 5.3528 7.1348 4.2047 1.5876 1.1482 5.5472
25 5.7480 4.6620 1.2290 4.2823 6.4887 3.3637 1.2090 0.9185 5.2798
50 10.4186 9.3241 2.2290 2.1411 5.3328 1.6819 0.5478 0.4593 4.7849

α = 10, λ = 5
2 1.2827 0.4885 0.3392 241.8476 215.4032 231.9457 202.7018 9.9019 12.7014
3 1.4931 0.7327 0.3938 161.2317 129.3803 154.6305 119.5240 6.6012 9.8563
4 1.6667 0.9770 0.4309 120.9238 88.8891 115.9729 80.6372 4.9509 8.2519
5 1.8192 1.2212 0.4587 96.7390 66.0951 92.7783 58.8898 3.9607 7.2054
8 2.2122 1.9540 0.5161 60.4619 35.3262 57.9864 29.8501 2.4755 5.4761

10 2.4469 2.4424 0.5445 48.3695 26.3853 46.3891 21.5395 1.9804 4.8458
12 2.6708 2.9309 0.5694 40.3079 20.9164 38.6576 16.5086 1.6503 4.4077
15 2.9952 3.6637 0.6035 32.2463 15.9109 30.9261 11.9564 1.3202 3.9545
20 3.5213 4.8849 0.6564 24.1848 11.4432 23.1946 7.9565 0.9902 3.4868
25 4.0412 6.1061 0.7074 19.3478 9.0580 18.5557 5.8567 0.7921 3.2013
50 6.6678 12.2122 0.9580 9.6739 5.0599 9.2778 2.4189 0.3961 2.6410

α = 20, λ = 5
2 1.2461 0.7147 0.5152 1281.3 1150.8 1272.369 1139.675 8.9636 11.1695
3 1.4176 1.0721 0.6111 854.2217 690.2013 848.2460 681.7304 5.9757 8.4710
4 1.5518 1.4295 0.6771 640.6663 470.8775 636.1845 463.9227 4.4818 6.9548
5 1.6647 1.7869 0.7256 512.5330 346.4738 508.9476 340.5052 3.5854 5.9686
8 1.9382 2.8590 0.8168 320.3332 177.3846 318.0923 173.0412 2.2409 4.3434

10 2.0925 3.5737 0.8537 256.2665 128.1020 254.4738 124.3508 1.7927 3.7512
12 2.2348 4.2885 0.8807 213.5554 98.0126 212.0615 94.6739 1.4939 3.3387
15 2.4346 5.3606 0.9100 170.8443 70.6073 169.6492 67.6976 1.1951 2.9097
20 2.7466 7.1475 0.9427 128.1333 46.4150 127.2369 43.9531 0.8964 2.4619
25 3.0444 8.9343 0.9654 102.5066 33.7225 101.7895 31.5393 0.7171 2.1831
50 4.4753 17.8686 1.0400 51.2533 13.3501 50.8948 11.7455 0.3585 1.6046
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Table 2. Estimates and some results about the FIM for the generalized exponential distribution
based on iid data for (α,λ ) = (6,2) based on record data for (α,λ ) = (6,2)

n R− e f f α̂ λ̂ Trace for IX Total Var. IX Var(α̂X) Var(λ̂X) α̂ λ̂ Trace for IL Total Var. IL Var(α̂L) Var(λ̂L)

5 1044.6 130.2816 2.9056 5.7233 8.27x107 8.27x107 1.4631 21.6489 3.1122 1.9482 51117 51113 3.2025
5.42x106 2.6692 8652.4 3.7282

7 204.4589 28.5095 2.5845 7.8281 75797 75796 0.8318 11.7008 2.8941 2.0348 461.4697 459.0213 2.4484
16499 1.4449 297.1895 3.0447

10 34.1752 14.5437 2.3710 11.0717 5453.4 5452.9 0.4886 8.4581 2.7598 2.1128 32.8367 30.8593 1.9774
2150.3 0.7589 38.4226 2.4702

12 22.7069 11.2116 2.2947 13.1952 681.0970 680.7153 0.3818 7.7926 2.7197 2.1257 16.1260 14.3222 1.8039
419.1019 0.5575 19.2658 2.3213

n based on iid data for (α,λ ) = (5,3) based on record data for (α,λ ) = (5,3)
5 731.0519 32.8464 4.0819 2.4441 3.249x105 3.249x105 2.9876 12.4133 4.3280 0.9313 1732.8 1726 6.7812

4.18x104 4.3088 601.821 6.2136
7 57.0307 17.5345 3.8258 3.2930 16755 16753 1.8804 8.0860 4.0563 1.0070 84.3860 79.0660 5.3200

4363.6 2.9178 68.1722 4.8722
10 19.2888 10.7101 3.5650 4.6175 525.7142 524.5639 1.1503 6.6838 3.9370 1.1411 18.8519 14.3822 4.4698

345.596 1.7715 18.1956 4.3703
12 18.9110 8.9975 3.4750 5.5007 196.5711 195.6630 0.9081 6.1880 3.8937 1.1900 12.1599 8.0095 4.1504

160.9940 1.3234 10.7284 4.0972

Table 3. Results for the real life example

data α̂ λ̂ Trace for I Total Var.I Var(α̂) Var(λ̂ )
r 4.4778 0.0946 562.1825 6.1319 6.1287 0.0033
x 5.8622 0.1181 1763.1 20.7401 20.7381 0.0021

Since the results for the exponentiated class of distributions and the inverse exponentiated class
of distributions are common, all numerical results obtained for the exponentiated class of distribu-
tions are also valid for the inverse exponentiated class of distributions.

5. Conclusions

In this paper, we have derived explicit expressions of the FIM for the two parameter exponentiated
class of distributions based on record values as well as on iid observations. We have obtained some
relations between the FIM contained in record values and the FIM contained iid observations. It is
obtained that the total information based on iid observations is greater than that of record values.
From the numerical results, it is observed that using the record values instead of the same number
iid observations reduces the asymptotic variance of one parameter and increases the asymptotic
variance of another parameter. A real life data is also presented to illustrate obtained results in the
paper.
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