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Abstract—In this paper we extend the idea of interpolated 
coefficients for a kind of nonlinear Volterra-Fredholm integral 
equation to the improved finite element method. we introduce 
this numerical approximation method and Newton iterative 
scheme for this integral equation. Then we derive convergence 
estimate for exact solution and approximation solution of the 
equation.  
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I. INTRODUCTION  
Integral equations of Volterra-Fredholm are often involved 

in various fields such as physics, biology and engineering, and 
numerical methods for solving integral equations have been 
studied extensively in the literature, see [1-9] for details. The 
finite element method with interpolated coefficients is an 
economic and graceful method. This method was introduced 
and analyzed for semilinear parabolic problems in Zlamal [13]. 
Xiong at. al. put the excellent interpolating coefficients idea 
into the finite element method for solving nonlinear differential 
equations [10-12].  

In this paper, we shall take the interpolating coefficients 
idea into numerical method of the integral equations and are 
concerned with the improved finite element method for solving 
a kind of mixed nonlinear Volterra-Fredholm integral equation 
as 
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where the function 1 2, ,f k k and ,F G  are known continuous 
functions defined on[ , ],[ ] [ , ]a b ab a b×  and R , respectively, 

( )u x  is the unknown function, 1 2,k k ∈R  and the parameters 
satisfy 

2 2
1 2 0.k k+ ≠  

In this paper, for some results about the convergence and 
stability of the present numerical method, we will assume the 
following conditions 

(i) 1
1 2, ([ , ])k k C a b∈  and 1,F G C∈ . 

(ii) 1
1 1 1 2 2 2 b ak M k Mγ γ −+ ≤ , where 

1 max ,          1, 2,ik iγ = =  

and 

1 2max ( ) ,        max ( )M F u M G u′ ′= = . 

II. METHOD OF SOLUTION 
In this section, we give a new  method to compute 

numerical solution of  mixed nonlinear Volterra-Fredholm 
integral equation by improved finite element method. Firstly 
we let hJ  be a partition of the interval [ , ]a b  such that 

0 1 2:h nJ a x x x x b= < < < =

. 

Assume that hJ  is quasi-uniform, i.e., there is a constant 
0C >  such that 

1( ),       1, 2, , .j j jh Ch C x x j n−≤ = − = 

 

Then we give respectively the approximation functions for  
( ), ( ( )), ( ( ))u x F u x G u x  as follows 
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where ( )j xϕ  are node basis functions defined by 
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The node basis functions ( )j xϕ  satisfy 

0
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                   (6) 

Substitute (2)-(4) into (1) yields 
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Taking , 1, 2, ,ix x i n= = 

 in (8) respectively, we have a 
system of equations from functional integral equation 
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where 1, 2, ,i n= 
. 
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the nonlinear system of (9) is rewritten in the vector form as 
follows 

1 2 .λ λ= − − − =H(U) U f AF(U) BG(U) 0        (10) 

From (10), we obtain corresponding Newton iterative 
algorithm scheme 

1 1[ ] ,
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k k k k
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           (11) 

where D  denotes differential with respect to vector U . 

III. CONVERGENCE ANALYSIS 
This section we analyze the error of the finite element 

method. To start our analysis, first define discrete norm by 
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For our convergence analysis, we need a lemma as follows. 

Lemma 1. Assume that , 0, 4 1a b ab> <  and 0,x ≥  
2 ,x b ax≤ +  then  x ab< . 

From the basic mathematical analysis, it is obvious that the 
lemma is established. 

Now we state the convergence error estimate result as 
follow. 

Theorem 1. Assume that ( )f x  is a function defined on 
[ , ]a b , and that ( ), ( )F t G t  in ( , )R = −∞ ∞  and 

1 2( , ), ( , )k x t k x t  in [ , ] [ , ]a b a b×  are sufficiently smooth 
continuous and arbitrary differentiable, ( )u x is an exact 
solution of (1), ( )hu x  is the finite element solution of (9), then 
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Proof. Subtracting (7) from (1) and taking ix x=  gives 
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where ( )i i ie u x u= − . One can easily find that 
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are the remainder of interpolation corresponding to the finite 
element, respectively. By use of interpolation polynomial error 
estimation, we have 
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Substituting (14)-(17) into (13), we find 

21
1,2 2,28

21
1 1 1,1 1,22

1

         ( )

[ ( )

i

n

j j
j

e M M h

M e M eλ γ
=

≤ +

+ +∑
  

21
2 2 2,1 2,22

21
1,2 2,28

( )] ( )d

        ( )

b

j j ja
M e M e y y

M M h

λ γ ϕ+ +

≤ +

∫  

1 1 1,1 2 2 2,1 ,

21
1 1 1,2 2 2 2,22 ,

( )( )

( )( ) .
h

h

M M b a e

M M b a e

λ γ λ γ

λ γ λ γ

∞

∞

+ + −

+ + −
 

Using the conditions (i) and (ii), we get 
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Application of Lemma 1 yields the desired estimate (12) 
and completes the proof of Theorem 1. 
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