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Abstract — In this paper, a linearisation method for nonlinear 
ordinary differential equations based on coordinate basis 
transformation is proposed. In order to transform a nonlinear 
equation into a linear one, we introduce a general framework to 
extract the coordinate basis of the differential system.  Actually, by 
introducing a mapping function predefined, this extraction 
method could connect each state variable of the new system with 
the variables in the original one.  Further, by using vector space 
for the closure of the Lie derivative, we can analytically obtain the 
mapping based on the subspace iteration. We argue that this 
method might be efficient in analyzing and solving ordinary 
differential systems of complex nonlinear forms. 
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I.  INTRODUCTION 
Differential equations are generally used in the analysis of 

complex systems from various fields, including physical 
dynamics, chemistry, engineering, economics and demographics. 
It has been developed with calculus, and its theory and method 
has been one of the key points in the development of modern 
science and technology. Almost all of the equations that describe 
the actual problems are non-linear. Along with the need of 
precise descriptions and solving practical problems, as well as 
the emergence and improvement of large computer, various 
problems of solving ordinary differential equation increasingly 
attract the attention of scientists and engineers. However, the 
studies of nonlinear equations mostly stay on qualitative 
analyses and numerical solutions. In 1841, Liouvile proved that 
the Riccati equation 

 
( ) ( ) ( )2dx a t x b t x c t

dt
= + +

 (1.1) 

cannot be solved by the elementary integral method except for 
some special types. For example, the function 2 2dx x y

dt
= + , 

which is simple in form, cannot be solved through elementary 
integration. Until 2010, this problem was solved with multiple 
integral iterative series methods [15]. In the 19th century, some 
problems in astrophysics and other technical sciences needed to 
study the local and global nature of solutions of complex 
differential equations. Since a large number of differential 
equations could not be solved by the elementary integral method, 
researchers discussed numerical solutions, the properties of 
solutions about the structure and characteristics of the 

differential equations or the distribution of curves defined by the 
differential equations [3-7]. 

With the vigorous development of nonlinear scientific 
research, people not only need to discuss individual solutions of 
differential equations, but also try to understand the general 
trend and structure of a class of solutions or all the solutions. For 
example, the number and stability of the solution of nonlinear 
equations are studied by branching theory. The branch theory 
also provides a basis for further study of the corresponding 
dynamic system. 

At present, there is no general solution to the nonlinear 
equation. As mentioned above, nonlinear ordinary differential 
equations are difficult to calculate and analyze, and the general 
mathematical method is invalid for nonlinear normal micro 
systems. Linear ordinary differential equations, in contrast, are 
more intuitive to show the relationship between each parameter. 
Moreover, a relatively complete solution and qualitative analysis 
method have been developed for the given linear ordinary 
differential equations. Therefore, we can make breakthroughs in 
the study of nonlinear ordinary differential equation by 
transforming nonlinear equations into analytically linear 
equations [1, 2]. 

Some quasilinearization techniques [8] and linearisation 
examples that satisfy the local property [9,13,14] was presented 
and proved. In 1973, Liao Shantao presented the theory of 
canonical equations [10-12]. The main idea of the theory of 
canonical equations was to return the vector field of the manifold 
to the vector field in the Euclidean space. It transformed the 
properties of the phase diagrams of the ordinary differential 
system in the manifold transformed into ordinary differential 
equations in Euclidean space, which was achieved by the activity 
frame. 

The theory of canonical equations is quite complete, but the 
method is too complicated to carry out. Therefore, we discuss 
the linearisation problem in another way. In this paper, we focus 
on the extraction of the coordinate basis, mapping the 
trajectories of the nonlinear space to the linear space. It is more 
straightforward of the coordinate basis transformation based 
linearisation method for ordinary differential equation although 
it is still in its infancy. 

This paper is organized as follows. In Section 2, we introduce 
some definitions and theorems on differential system and vector 
space. In Section 3, the linearisation method of coordinate basis 

International Conference on Applied Mathematics, Modeling and Simulation (AMMS 2017)

Copyright © 2017, the Authors. Published by Atlantis Press. 
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/). 

Advances in Intelligent Systems Research, volume 153

14



transformation is showed. In Section 4, we give two examples 
of the linearisation experiment. We summarize our conclusion 
and give some expectation in the last section. 

II. RELATED WORK 
In this section we will introduce some definitions and 

theorems on differential system and vector space, which are 
prepared for our linearisation method.S 

A. Mapping and Similarity on Lipschitz Continuous Vector 
Field 
Consider a mapping: : k lα → 

. Given a set kS ⊆  ,
( )Sα  is defined by applying α  to all the elements of S . 

Similarly, the reflect set is ( ) ( ){ }1 :T s Tα α− ∈ . Define 

0 , , IX XS F  to be a continuous system on the variate 

( )1: , , nx x x



 and 
0 , , IY YT G  to be a continuous system on 

the variate ( )1y : , , ny y



. 

Def.1 (Simulation). T is thought to simulate S  iff there 
exists a smooth mapping  : n mα → 

, in which: 

1. 
0 0Y X⊇  and 

I IY X⊇ . 

2. For any trajectory [ ): 0, IT Xτ →  in S , α τ  is the 
trajectory in T . 

A simulation relation means that any time trajectory in S  
can be mapped into a trajectory in T  through α . However, the 
inversion may not exist since α  do not have to be reversible. In 
other words, there may be some time trajectories in T  which 
can not be mapped into by any trajectory in S . 

S  and T  are defined as Lipschitz continuous vector field. 

Them.1 T  simulates S  if the following conditions are 
satisfied: 

1. 
0 0Y X⊇ . 

2. 
I IY X⊇ . 

3. ( )( ) ( )x J xαα = ⋅
 

G F , where Jα
 is the Jacobian: 

( )

1 1

1

1

1

, ,
n

n

m m

n

x x
J x x

x x

α

α α

α α

∂ ∂ 
 ∂ ∂ 
 =
 ∂ ∂ 
 ∂ ∂ 



   



 

and ( ) ( ) ( )( )1 , , mx x xα α α=
  



, : nα → 
. 

Proof. Let τ  be a trajectory over x  of the system S . Note 
that at any time [ )0,t T∈ , ( )( )x

x
d t
dt
τ τ= F  

We want to proof that ( ) ( )( )y xt tτ α τ=  is a time trajectory 
in S . Since ( ) 00x Xτ ∈ , it can be concluded that 

( ) ( )( ) 00 0y x Yτ α τ= ∈ . Since ( )x It Xτ ∈  is established for any 

[ )0,t T∈ , then ( ) ( )( )y x It t Yτ α τ= ∈ . Differentiate 
yτ , then we 

achieve 

 

( )( ) ( )( )( ) ( )( )xy
x y

d td
J t t

dt dt α

α ττ
α τ τ= = ⋅ =F G

. (2.1) 

Therefor 
y xτ α τ= 

 conforms to the dynamical system T . 
Through Lipschitz continuity of G , it shows that 

yτ  is the 
unique trajectory starting from ( )0xα τ . 

It is important to note that, in normal conditions a trajectory 
( ) ( )y xt tτ α τ= 

 may exist in a longer time interval than [ )0,T  
over which ( )x tτ  is assumed to be defined. 

Them.2 Let T  simulate S  through a mapping α . If 
IY Y⊇  is a positive invariant set of T , then ( )1-

IY Xα 

 is a 
positive invariant set of S . 

Def.2  (Linearizing Coordinate Bases Transformation). 
Let S  be a nonlinear system. α  is a linearizing coordinate 
bases transformation if it maps every trajectory from S  to a 
affine system T . In other words,  α  insures that S  simulates 
a affine system T . 

We search for a mapping α  to obtain T  which simulates a 
given system S  through α . In other words, we search for a 
mapping α  that satisfies 

 ( ) ( ) ( )J x x A x bα ⋅ = +


  

F . (2.2) 

,A b  are constant matrices. After finding out the mapping, 
we can always find out the appropriate initial and invariance 
conditions for the simulating system T  whose dynamics will 
be given by ( ) ( )y A y b= +



 

G . 

Def.3 (Lie Derivative). Let ( ) ( ) ( )( )1 , , mx x xα α α=
  



 be a 
smooth mapping : n mα → 

, wherein each : n
iα → 

. 

( )( ) ( ) ( )F i ix xα α= ∇ ⋅
 

L F  indicates the Lie derivative of the 
function ( )i xα   in the vector field F . 

Lemma.1  

( ) ( ) ( )J x x A x bα ⋅ = +


  

F  

Proof. Since Jacobian Jα
: 

 

( )

1 1

1 1

1

1

,
n

n

m m n

n

y y
x x

J x x
y y
x x

α

α

α

∂ ∂ 
 ∂ ∂ ∇     = =     ∂ ∂ ∇  
 ∂ ∂ 



    



 (2.3) 
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It can be obtained that 

 

( )

( )

( )( )

( )( )

11 F

n F m

x

J
x

α

αα

α α

 ∇ ⋅ 
  ⋅ = =   
    ∇ ⋅   



 



LF

F

F L
 (2.4) 

Given functions 
1 2, , , : n

mα α α →  

 and constant 
equations 1: n → 

, we consider the vector space generated by 
these equations: 

 
( )1 0 0

1
1, , , 1 , ,

m

m i i m
i

Span c c c cα α α
=

 = ⋅ + ∈ 
 

∑  

 (2.5) 

B. The Closure of Vector Space 
Them.3 (Vector Space Closure Theorem). The vector 

space is closed under Lie derivative. In other words, a mapping 
( )1: , , mα α α

 represents a linearizing coordinate bases 
transformation of a system iff the vector space 

( )1: 1, , , mV Span α α

 is closure under the calculation of Lie 
derivative. 

For example, ( ), Fg V g V∀ ∈ ∈L . 

Proof. Let α  be a linearizing coordinate bases 
transformation which maps trajectories in F  into trajectories 
in G : 

 
dy Ay b
dt

= +






 (2.6) 

Therefor to each 
iα , 

 
( )F i i ij j

j
b Aα α= + ∑L

 (2.7) 

Any element Vβ ∈  can be written as 
0 k k

k
c cβ α= + ∑ which 

is a linear combination of the coordinate bases of the vector 
space. Using (2.6) we can obtain ( )F βL  which is a linear 
combination of 

iα  and 1. Therefor it can be proofed that 

( )F Vβ ∈L . 

On the contrary, if V  is closure under the calculate of Lie 
derivative, then its bases 

11, , , mα α

 satisfy the condition 

( ) 1F i i ij j
j

b aα α= + ∑L . 

From Lemma1,  

 

( )( )

( )( )
( )

1F

F m

x

J A x b
x

α

α

α
α

 
 

⋅ = = + 
  
 











L

F

L
 (2.8) 

wherein ( ),ij iA b bα = = 
 . All above results demonstrate that 

α  is a linearizing coordinate bases transformation. 

III. COORDINATE BASIS TRANSFORMATION 
In this section, we will present the linearisation method of 

coordinate basis transformation for ordinary differential 
equation space. 

A. Subspace Iterative Method 
If the linearising method of coordinate bases transformation 

exists, it could be found out by the closure of vector space under 
Lie derivative. Our goal is to find out a vector space that consists 
of some functions, while this space is closed under the action of 
Lie derivative.  

Given a set of functions { }1, , kB f f= 

, we use ( )Span B  to 
represent the vector established by the functions in B . 

 
( ) ( )

1

k

j j j
j

Span B a f x a
=

 
= ∈ 

 
∑ 



  (3.1) 

We use a method of subspace iteration as follows: 

1. Choose an initial vector space { }( )0 1, , NV Span α α= 

. 

2. Use 
iV  to define 

1iV +
 at each step, wherein 

1iV +
 is the 

subspace of 
iV . 

3. Stop the operation when 
1n nV V+ = . IF 

nV  is a non-trivial 
vector space, then we can achieve a non-trivial linear 
coordinate basis transformation from the basis of 

nV . 

At step 1, we consider to choose the initial vector space 
0V . 

To those ordinary differential equations with polynomial on the 
right-hand side, usually 

0V  can be made up of all the monomial 
expressions whose degrees are less than a given value. Each 
function 

if  in 
0V  can be written as 

i i
i

cα∑ , wherein 
ic  is a 

parameter. 
0V  can also be represented by these functions in it: 

{ }( )0 0 , , kV Span f f= 

. There are two methods to establish the 
initial space: one is setting a high degree of the initial bases of 

0V  and then the degrees would reduce with the bases reduced 
during the iteration. The other one is setting the same degree N  
of the initial bases as the highest degree of the polynomial on the 
right-hand side of the ordinary differential equation, and if the 
initial space was proved to be improper after the iterative 
computations ,then we would reset the initial degree as 1N + . In 
some particular situations, the initial space can be fixed. It will 
be mentioned later in this paper. 

At step 2, 
1iV +
 is calculated as follows: 

 
( ) ( ){ }1i i i F iV V f V f V+ = = ∈ ∈D L

  (3.2) 
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Lemma.2 ( )1i iV V+ ⊆D  is the subspace of 
iV , if 

iV  is a 
vector space. 

Proof. Suppose that 
iV  is made up of the bases ( )11, , , kα α

, 
then it is obvious that ( )1i iV V+ ⊆D . Now we want to prove that 

1iV +
 is a vector space. First 

11 iV +∈ . Let 
1, , lf f

 are functions in 

1iV +
, it can be obtained that ( ) ( )1 , , l if f V∈D D . The affine 

combination of the functions is 
0

1
: 1

l

j j
j

f a a f
=

+ ∑ , wherein 

.1, , la a

. Its Lie derivative is 

 
( )0

1 1
1

l l

F j j j F j
j j

f a a f a f
= =

 
+ = 

 
∑ ∑L L

   (3.3) 

Therefor 
F fL  can be written as the linear combination of 

the Lie derivatives of 
1, , lf f

 in 
iV . Thus ( )F f V∈L  and then 

1if V +∈ . Each linear combination of the elements in 
1iV +
 belongs 

to 
iV  as well. 

Them.4 Given an initial vector space 
0V  and vector field 

F , the space will be converged to a subspace *
0V V⊆  through 

limited steps of iteration. Let 
.1, , mα α

 be the base functions 
which establish *V , 

1. The transformation ( ).1: , , mα α α

 , which is made up 
of the base function of the space that we obtain finally, 
is linear. 

2. To each linearising coordinate bases transformation 
( ).1: , , mβ β β

, *Vβ ∈  for each 
0Vβ ∈ . 

Proof. If 
1i iV V+ ⊆  is converged through the iteration, then 

the degree of 
1iV +
 would be less than 

iV . Since the degree of 
0V  

is limited, the upper limit of the iteration is the same as the 
number of the base equations of 

0V . 

We suppose that there exists a linearisation coordinate basis 
transformation ( ).1: , , mβ β β

 which satisfied 
0i Vβ ∈ . Note that 

the space U  established by 
.11, , , mβ β

 is the subset of 
0V . It 

also can be proved that if 
iU V⊆ , then 

1+iU V⊆ . Through the 
inductive method, *U V⊆  is proved. 

B. The Algorithm 
Suppose the initial ODE: ( )X F X= , wherein 

( )1, , T
nX x x= 

, ( )1, , T
nF f f= 

. 

1. Observe the the right-hand side of the equation to get the 
highest degree N . Set non-negative integer parameters 
, , , ,ml m l i k . 

2. Establish a set 

{ }
1

0 1m

m

l
m k

m n

l l

V x l N y k M
≤ ≤

=

 
  = ≤ ≤ ≤ ≤ 
 
 ∑ 

∏ 

. 

3. Set 
V

k k
k

f c y
τ∈

= ∑ , wherein 
kτ  is the set of the indexes of 

V . Calculate the Lie derivative ( )
1

n

F i
i i

ff f
x=

 ∂
= ⋅ ∂ 

∑L . 

4. Compare the Lie derivative ( )F fL  and the right-hand 
side of the equation ( )F X . If an element 

ky  did not 
exist in ( )F X  or V , let the coefficient of 

ky  in the 
integrated ( )F fL  be zero. 

5. Arrange ( )F fL  once again. Select the nonzero terms 
to establish a new set 

1V . 

6. If 
1V = Φ , then we set 1N N= +  and return to step 2; if 

1V V= , then stop the steps and output V ; otherwise, set 

1V V=  and return to step 3. 

 
FIGURE I.  ALGORITHM FLOW CHART OF THE SUBSPACE 

ITERATIVE METHOD 

C. The Initial Bases Selection 
It seems to be straightforward to linearising any non-linear 

ordinary differential equation while the generic algorithm has 
been applied. Nevertheless, because of the uncertainty of the 
initial base selection, the iterative algorithm will be quite tedious 
when the degree of the initial differential system is high. And in 
the actual engineering problems, most often we just need to 
analyze systems of ordinary differential equations with three or 
two elements. 
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We found that for a system of three-dimensional ordinary 
differential equations, when the right-hand side of the equation 
only includes constant terms, one degree terms and cross terms, 
it is able to set  

 ( )2 2 2
1 1 2 1 3 1 2 2 3 2 3 3, , , , , , , , ,1x x x x x x x x x x x x

   (3.4) 

as the initial bases. In other words, any three-dimensional 
ordinary differential equations which only includes constant 
terms, one degree terms and cross terms in the right-hand side of 
the equations, can be transformed into linear ordinary 
differential equations with no more than nine elements. More 
experiments are shown in the next section. 

IV. EXPERIMENT 
In this section, we present two examples of the linearisation 

method based on coordinate basis transformation. 

Exp.1 Given a non-linear ordinary differential equation 

 

1 1 2 3 1 2 1 3 2 3

2 1 2 3 1 2 1 3 2 3

3 1 2 3 1 2 1 3 2 3

9 3 10 10 8 8
6 5 2 5 4 10 9

10 10 8 9 7 1

x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x

= + + + + + +
 = + + + + + +
 = + + + + + +





  (4.1) 

Based on the previous conclusion, we directly set the initial 
bases ( )1 9, , ,1Y y y= 

: 

 

2
1 1 2 1 2 3 1 3

2
4 1 5 2 6 2 3

2
7 2 8 3 9 3

y x y x x y x x
y x y x y x x
y x y x y x

 = = =
 = = =
 = = =    (4.2) 

Then the linearising result shows as follows: 

 

1 1 2 3 4

2 1 2 3 4 5 6 7

3 1 2 3 4 6 8 9

4 2 3 4 6 7 9

5 2 5 6 7

6 2 3 5 6 7 8 9

7 2 3 4 6 7 9

18 6 20 16
6 14 2 9 3 10 8

10 19 3 10 8
10 9 8 3 10 8
12 10 4 18

6 10 15 2 9
5 4 6 10 5 2 9

y y y y y
y y y y y y y y
y y y y y y y y
y y y y y y y
y y y y y
y y y y y y y y
y y y y y y y

= + + +
= + + + + + +
= + + + + + +
= + + + + + +
= + + +
= + + + + + +
= + + + + + +















8 3 6 8 9

9 2 3 4 6 7 9

2 20 20 2
8 9 7 10 10 1

y y y y y
y y y y y y y











 = + + +
 = + + + + + +





  (4.3) 

The original three-dimensional nonlinear ordinary 
differential equation is converted to a nine-dimensional linear 
ordinary differential equation. The other experiment will present 
that the linearising result of the same kind of nonlinear ordinary 
differential equation may be more concise. 

Exp.2 Given a non-linear ordinary differential equation 

 
1 1 2 3 1 2 1 3 2 3

2 1 2 3 1 2 1 3 2 3

3 1 2 3 1 2 1 3 2 3

3 4 4 7 7 4
10 7 5 10 7 7 2

9 3 9 3 5 2 5

x x x x x x x x x x
x x x x x x x x x x

x x x x x x x x x x

= + + + + + +
 = + + + + + +
 = + + + + + +







  (4.4) 

We select the same initial baese as in Exp 1 and after the 
iterative steps, the bases have been simplified: 

 1 1 2 2 1 3 3 2 3

4 1 5 2 6 3

y x x y x x y x x
y x y x y x

= = =
 = = =

   (4.5) 

Then the linearising result is: 

 

1 1 2 3 4 5

2 1 2 3 4 6

3 1 2 3 4 5 6

4 1 2 4 5 6

5 1 2 3 4 5 6

6 1 2 3 4 5 6

10 5 2 4 4
3 12 5 4
4 7 3 7 4 4
9 10 16 5 2
10 7 10 7 7 5 2
3 5 9 2 3 9 5

y y y y y y
y y y y y y
y y y y y y y
y y y y y y
y y y y y y y
y y y y y y y

= + + + +
 = + + + +
 = + + + + + +
 = + + + +
 = + + + + + +


= + + + + + +

   (4.6) 

V. CONCLUSION AND EXPECTATION 
In this paper, we demonstrate that in most cases there exist a 

linearising coordinate bases transformation which could map a 
given non-linear ordinary differential system into a linear one. It 
is shown that the coordinate bases can be obtained through 
limited iteration steps. It is interesting to find that if a three-
dimensional ordinary differential system only includes constant 
terms, one degree terms and cross terms, it can be always 
transformed into a linear ordinary differential system with no 
more than nine term.  We argue that this linearising algorithm is 
exercisable in case of given appropriate initial bases. However, 
searching for the affine transformation of multivariate high-
dimensional non-linear ordinary differential equations is always 
tedious. We might investigate this problem in our future studies. 
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